rand/distributions/
uniform.rs

1// Copyright 2018-2020 Developers of the Rand project.
2// Copyright 2017 The Rust Project Developers.
3//
4// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
7// option. This file may not be copied, modified, or distributed
8// except according to those terms.
9
10//! A distribution uniformly sampling numbers within a given range.
11//!
12//! [`Uniform`] is the standard distribution to sample uniformly from a range;
13//! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a
14//! standard die. [`Rng::gen_range`] supports any type supported by
15//! [`Uniform`].
16//!
17//! This distribution is provided with support for several primitive types
18//! (all integer and floating-point types) as well as [`std::time::Duration`],
19//! and supports extension to user-defined types via a type-specific *back-end*
20//! implementation.
21//!
22//! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the
23//! back-ends supporting sampling from primitive integer and floating-point
24//! ranges as well as from [`std::time::Duration`]; these types do not normally
25//! need to be used directly (unless implementing a derived back-end).
26//!
27//! # Example usage
28//!
29//! ```
30//! use rand::{Rng, thread_rng};
31//! use rand::distributions::Uniform;
32//!
33//! let mut rng = thread_rng();
34//! let side = Uniform::new(-10.0, 10.0);
35//!
36//! // sample between 1 and 10 points
37//! for _ in 0..rng.gen_range(1..=10) {
38//!     // sample a point from the square with sides -10 - 10 in two dimensions
39//!     let (x, y) = (rng.sample(side), rng.sample(side));
40//!     println!("Point: {}, {}", x, y);
41//! }
42//! ```
43//!
44//! # Extending `Uniform` to support a custom type
45//!
46//! To extend [`Uniform`] to support your own types, write a back-end which
47//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`]
48//! helper trait to "register" your back-end. See the `MyF32` example below.
49//!
50//! At a minimum, the back-end needs to store any parameters needed for sampling
51//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`.
52//! Those methods should include an assert to check the range is valid (i.e.
53//! `low < high`). The example below merely wraps another back-end.
54//!
55//! The `new`, `new_inclusive` and `sample_single` functions use arguments of
56//! type SampleBorrow<X> in order to support passing in values by reference or
57//! by value. In the implementation of these functions, you can choose to
58//! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose
59//! to copy or clone the value, whatever is appropriate for your type.
60//!
61//! ```
62//! use rand::prelude::*;
63//! use rand::distributions::uniform::{Uniform, SampleUniform,
64//!         UniformSampler, UniformFloat, SampleBorrow};
65//!
66//! struct MyF32(f32);
67//!
68//! #[derive(Clone, Copy, Debug)]
69//! struct UniformMyF32(UniformFloat<f32>);
70//!
71//! impl UniformSampler for UniformMyF32 {
72//!     type X = MyF32;
73//!     fn new<B1, B2>(low: B1, high: B2) -> Self
74//!         where B1: SampleBorrow<Self::X> + Sized,
75//!               B2: SampleBorrow<Self::X> + Sized
76//!     {
77//!         UniformMyF32(UniformFloat::<f32>::new(low.borrow().0, high.borrow().0))
78//!     }
79//!     fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
80//!         where B1: SampleBorrow<Self::X> + Sized,
81//!               B2: SampleBorrow<Self::X> + Sized
82//!     {
83//!         UniformMyF32(UniformFloat::<f32>::new_inclusive(
84//!             low.borrow().0,
85//!             high.borrow().0,
86//!         ))
87//!     }
88//!     fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
89//!         MyF32(self.0.sample(rng))
90//!     }
91//! }
92//!
93//! impl SampleUniform for MyF32 {
94//!     type Sampler = UniformMyF32;
95//! }
96//!
97//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32));
98//! let uniform = Uniform::new(low, high);
99//! let x = uniform.sample(&mut thread_rng());
100//! ```
101//!
102//! [`SampleUniform`]: crate::distributions::uniform::SampleUniform
103//! [`UniformSampler`]: crate::distributions::uniform::UniformSampler
104//! [`UniformInt`]: crate::distributions::uniform::UniformInt
105//! [`UniformFloat`]: crate::distributions::uniform::UniformFloat
106//! [`UniformDuration`]: crate::distributions::uniform::UniformDuration
107//! [`SampleBorrow::borrow`]: crate::distributions::uniform::SampleBorrow::borrow
108
109use core::time::Duration;
110use core::ops::{Range, RangeInclusive};
111
112use crate::distributions::float::IntoFloat;
113use crate::distributions::utils::{BoolAsSIMD, FloatAsSIMD, FloatSIMDUtils, WideningMultiply};
114use crate::distributions::Distribution;
115use crate::{Rng, RngCore};
116
117#[cfg(not(feature = "std"))]
118#[allow(unused_imports)] // rustc doesn't detect that this is actually used
119use crate::distributions::utils::Float;
120
121#[cfg(feature = "simd_support")] use packed_simd::*;
122
123#[cfg(feature = "serde1")]
124use serde::{Serialize, Deserialize};
125
126/// Sample values uniformly between two bounds.
127///
128/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform
129/// distribution sampling from the given range; these functions may do extra
130/// work up front to make sampling of multiple values faster. If only one sample
131/// from the range is required, [`Rng::gen_range`] can be more efficient.
132///
133/// When sampling from a constant range, many calculations can happen at
134/// compile-time and all methods should be fast; for floating-point ranges and
135/// the full range of integer types this should have comparable performance to
136/// the `Standard` distribution.
137///
138/// Steps are taken to avoid bias which might be present in naive
139/// implementations; for example `rng.gen::<u8>() % 170` samples from the range
140/// `[0, 169]` but is twice as likely to select numbers less than 85 than other
141/// values. Further, the implementations here give more weight to the high-bits
142/// generated by the RNG than the low bits, since with some RNGs the low-bits
143/// are of lower quality than the high bits.
144///
145/// Implementations must sample in `[low, high)` range for
146/// `Uniform::new(low, high)`, i.e., excluding `high`. In particular, care must
147/// be taken to ensure that rounding never results values `< low` or `>= high`.
148///
149/// # Example
150///
151/// ```
152/// use rand::distributions::{Distribution, Uniform};
153///
154/// let between = Uniform::from(10..10000);
155/// let mut rng = rand::thread_rng();
156/// let mut sum = 0;
157/// for _ in 0..1000 {
158///     sum += between.sample(&mut rng);
159/// }
160/// println!("{}", sum);
161/// ```
162///
163/// For a single sample, [`Rng::gen_range`] may be preferred:
164///
165/// ```
166/// use rand::Rng;
167///
168/// let mut rng = rand::thread_rng();
169/// println!("{}", rng.gen_range(0..10));
170/// ```
171///
172/// [`new`]: Uniform::new
173/// [`new_inclusive`]: Uniform::new_inclusive
174/// [`Rng::gen_range`]: Rng::gen_range
175#[derive(Clone, Copy, Debug, PartialEq)]
176#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
177#[cfg_attr(feature = "serde1", serde(bound(serialize = "X::Sampler: Serialize")))]
178#[cfg_attr(feature = "serde1", serde(bound(deserialize = "X::Sampler: Deserialize<'de>")))]
179pub struct Uniform<X: SampleUniform>(X::Sampler);
180
181impl<X: SampleUniform> Uniform<X> {
182    /// Create a new `Uniform` instance which samples uniformly from the half
183    /// open range `[low, high)` (excluding `high`). Panics if `low >= high`.
184    pub fn new<B1, B2>(low: B1, high: B2) -> Uniform<X>
185    where
186        B1: SampleBorrow<X> + Sized,
187        B2: SampleBorrow<X> + Sized,
188    {
189        Uniform(X::Sampler::new(low, high))
190    }
191
192    /// Create a new `Uniform` instance which samples uniformly from the closed
193    /// range `[low, high]` (inclusive). Panics if `low > high`.
194    pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Uniform<X>
195    where
196        B1: SampleBorrow<X> + Sized,
197        B2: SampleBorrow<X> + Sized,
198    {
199        Uniform(X::Sampler::new_inclusive(low, high))
200    }
201}
202
203impl<X: SampleUniform> Distribution<X> for Uniform<X> {
204    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X {
205        self.0.sample(rng)
206    }
207}
208
209/// Helper trait for creating objects using the correct implementation of
210/// [`UniformSampler`] for the sampling type.
211///
212/// See the [module documentation] on how to implement [`Uniform`] range
213/// sampling for a custom type.
214///
215/// [module documentation]: crate::distributions::uniform
216pub trait SampleUniform: Sized {
217    /// The `UniformSampler` implementation supporting type `X`.
218    type Sampler: UniformSampler<X = Self>;
219}
220
221/// Helper trait handling actual uniform sampling.
222///
223/// See the [module documentation] on how to implement [`Uniform`] range
224/// sampling for a custom type.
225///
226/// Implementation of [`sample_single`] is optional, and is only useful when
227/// the implementation can be faster than `Self::new(low, high).sample(rng)`.
228///
229/// [module documentation]: crate::distributions::uniform
230/// [`sample_single`]: UniformSampler::sample_single
231pub trait UniformSampler: Sized {
232    /// The type sampled by this implementation.
233    type X;
234
235    /// Construct self, with inclusive lower bound and exclusive upper bound
236    /// `[low, high)`.
237    ///
238    /// Usually users should not call this directly but instead use
239    /// `Uniform::new`, which asserts that `low < high` before calling this.
240    fn new<B1, B2>(low: B1, high: B2) -> Self
241    where
242        B1: SampleBorrow<Self::X> + Sized,
243        B2: SampleBorrow<Self::X> + Sized;
244
245    /// Construct self, with inclusive bounds `[low, high]`.
246    ///
247    /// Usually users should not call this directly but instead use
248    /// `Uniform::new_inclusive`, which asserts that `low <= high` before
249    /// calling this.
250    fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
251    where
252        B1: SampleBorrow<Self::X> + Sized,
253        B2: SampleBorrow<Self::X> + Sized;
254
255    /// Sample a value.
256    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X;
257
258    /// Sample a single value uniformly from a range with inclusive lower bound
259    /// and exclusive upper bound `[low, high)`.
260    ///
261    /// By default this is implemented using
262    /// `UniformSampler::new(low, high).sample(rng)`. However, for some types
263    /// more optimal implementations for single usage may be provided via this
264    /// method (which is the case for integers and floats).
265    /// Results may not be identical.
266    ///
267    /// Note that to use this method in a generic context, the type needs to be
268    /// retrieved via `SampleUniform::Sampler` as follows:
269    /// ```
270    /// use rand::{thread_rng, distributions::uniform::{SampleUniform, UniformSampler}};
271    /// # #[allow(unused)]
272    /// fn sample_from_range<T: SampleUniform>(lb: T, ub: T) -> T {
273    ///     let mut rng = thread_rng();
274    ///     <T as SampleUniform>::Sampler::sample_single(lb, ub, &mut rng)
275    /// }
276    /// ```
277    fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) -> Self::X
278    where
279        B1: SampleBorrow<Self::X> + Sized,
280        B2: SampleBorrow<Self::X> + Sized,
281    {
282        let uniform: Self = UniformSampler::new(low, high);
283        uniform.sample(rng)
284    }
285
286    /// Sample a single value uniformly from a range with inclusive lower bound
287    /// and inclusive upper bound `[low, high]`.
288    ///
289    /// By default this is implemented using
290    /// `UniformSampler::new_inclusive(low, high).sample(rng)`. However, for
291    /// some types more optimal implementations for single usage may be provided
292    /// via this method.
293    /// Results may not be identical.
294    fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R)
295        -> Self::X
296        where B1: SampleBorrow<Self::X> + Sized,
297              B2: SampleBorrow<Self::X> + Sized
298    {
299        let uniform: Self = UniformSampler::new_inclusive(low, high);
300        uniform.sample(rng)
301    }
302}
303
304impl<X: SampleUniform> From<Range<X>> for Uniform<X> {
305    fn from(r: ::core::ops::Range<X>) -> Uniform<X> {
306        Uniform::new(r.start, r.end)
307    }
308}
309
310impl<X: SampleUniform> From<RangeInclusive<X>> for Uniform<X> {
311    fn from(r: ::core::ops::RangeInclusive<X>) -> Uniform<X> {
312        Uniform::new_inclusive(r.start(), r.end())
313    }
314}
315
316
317/// Helper trait similar to [`Borrow`] but implemented
318/// only for SampleUniform and references to SampleUniform in
319/// order to resolve ambiguity issues.
320///
321/// [`Borrow`]: std::borrow::Borrow
322pub trait SampleBorrow<Borrowed> {
323    /// Immutably borrows from an owned value. See [`Borrow::borrow`]
324    ///
325    /// [`Borrow::borrow`]: std::borrow::Borrow::borrow
326    fn borrow(&self) -> &Borrowed;
327}
328impl<Borrowed> SampleBorrow<Borrowed> for Borrowed
329where Borrowed: SampleUniform
330{
331    #[inline(always)]
332    fn borrow(&self) -> &Borrowed {
333        self
334    }
335}
336impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed
337where Borrowed: SampleUniform
338{
339    #[inline(always)]
340    fn borrow(&self) -> &Borrowed {
341        *self
342    }
343}
344
345/// Range that supports generating a single sample efficiently.
346///
347/// Any type implementing this trait can be used to specify the sampled range
348/// for `Rng::gen_range`.
349pub trait SampleRange<T> {
350    /// Generate a sample from the given range.
351    fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T;
352
353    /// Check whether the range is empty.
354    fn is_empty(&self) -> bool;
355}
356
357impl<T: SampleUniform + PartialOrd> SampleRange<T> for Range<T> {
358    #[inline]
359    fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T {
360        T::Sampler::sample_single(self.start, self.end, rng)
361    }
362
363    #[inline]
364    fn is_empty(&self) -> bool {
365        !(self.start < self.end)
366    }
367}
368
369impl<T: SampleUniform + PartialOrd> SampleRange<T> for RangeInclusive<T> {
370    #[inline]
371    fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T {
372        T::Sampler::sample_single_inclusive(self.start(), self.end(), rng)
373    }
374
375    #[inline]
376    fn is_empty(&self) -> bool {
377        !(self.start() <= self.end())
378    }
379}
380
381
382////////////////////////////////////////////////////////////////////////////////
383
384// What follows are all back-ends.
385
386
387/// The back-end implementing [`UniformSampler`] for integer types.
388///
389/// Unless you are implementing [`UniformSampler`] for your own type, this type
390/// should not be used directly, use [`Uniform`] instead.
391///
392/// # Implementation notes
393///
394/// For simplicity, we use the same generic struct `UniformInt<X>` for all
395/// integer types `X`. This gives us only one field type, `X`; to store unsigned
396/// values of this size, we take use the fact that these conversions are no-ops.
397///
398/// For a closed range, the number of possible numbers we should generate is
399/// `range = (high - low + 1)`. To avoid bias, we must ensure that the size of
400/// our sample space, `zone`, is a multiple of `range`; other values must be
401/// rejected (by replacing with a new random sample).
402///
403/// As a special case, we use `range = 0` to represent the full range of the
404/// result type (i.e. for `new_inclusive($ty::MIN, $ty::MAX)`).
405///
406/// The optimum `zone` is the largest product of `range` which fits in our
407/// (unsigned) target type. We calculate this by calculating how many numbers we
408/// must reject: `reject = (MAX + 1) % range = (MAX - range + 1) % range`. Any (large)
409/// product of `range` will suffice, thus in `sample_single` we multiply by a
410/// power of 2 via bit-shifting (faster but may cause more rejections).
411///
412/// The smallest integer PRNGs generate is `u32`. For 8- and 16-bit outputs we
413/// use `u32` for our `zone` and samples (because it's not slower and because
414/// it reduces the chance of having to reject a sample). In this case we cannot
415/// store `zone` in the target type since it is too large, however we know
416/// `ints_to_reject < range <= $unsigned::MAX`.
417///
418/// An alternative to using a modulus is widening multiply: After a widening
419/// multiply by `range`, the result is in the high word. Then comparing the low
420/// word against `zone` makes sure our distribution is uniform.
421#[derive(Clone, Copy, Debug, PartialEq)]
422#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
423pub struct UniformInt<X> {
424    low: X,
425    range: X,
426    z: X, // either ints_to_reject or zone depending on implementation
427}
428
429macro_rules! uniform_int_impl {
430    ($ty:ty, $unsigned:ident, $u_large:ident) => {
431        impl SampleUniform for $ty {
432            type Sampler = UniformInt<$ty>;
433        }
434
435        impl UniformSampler for UniformInt<$ty> {
436            // We play free and fast with unsigned vs signed here
437            // (when $ty is signed), but that's fine, since the
438            // contract of this macro is for $ty and $unsigned to be
439            // "bit-equal", so casting between them is a no-op.
440
441            type X = $ty;
442
443            #[inline] // if the range is constant, this helps LLVM to do the
444                      // calculations at compile-time.
445            fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
446            where
447                B1: SampleBorrow<Self::X> + Sized,
448                B2: SampleBorrow<Self::X> + Sized,
449            {
450                let low = *low_b.borrow();
451                let high = *high_b.borrow();
452                assert!(low < high, "Uniform::new called with `low >= high`");
453                UniformSampler::new_inclusive(low, high - 1)
454            }
455
456            #[inline] // if the range is constant, this helps LLVM to do the
457                      // calculations at compile-time.
458            fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
459            where
460                B1: SampleBorrow<Self::X> + Sized,
461                B2: SampleBorrow<Self::X> + Sized,
462            {
463                let low = *low_b.borrow();
464                let high = *high_b.borrow();
465                assert!(
466                    low <= high,
467                    "Uniform::new_inclusive called with `low > high`"
468                );
469                let unsigned_max = ::core::$u_large::MAX;
470
471                let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned;
472                let ints_to_reject = if range > 0 {
473                    let range = $u_large::from(range);
474                    (unsigned_max - range + 1) % range
475                } else {
476                    0
477                };
478
479                UniformInt {
480                    low,
481                    // These are really $unsigned values, but store as $ty:
482                    range: range as $ty,
483                    z: ints_to_reject as $unsigned as $ty,
484                }
485            }
486
487            #[inline]
488            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
489                let range = self.range as $unsigned as $u_large;
490                if range > 0 {
491                    let unsigned_max = ::core::$u_large::MAX;
492                    let zone = unsigned_max - (self.z as $unsigned as $u_large);
493                    loop {
494                        let v: $u_large = rng.gen();
495                        let (hi, lo) = v.wmul(range);
496                        if lo <= zone {
497                            return self.low.wrapping_add(hi as $ty);
498                        }
499                    }
500                } else {
501                    // Sample from the entire integer range.
502                    rng.gen()
503                }
504            }
505
506            #[inline]
507            fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
508            where
509                B1: SampleBorrow<Self::X> + Sized,
510                B2: SampleBorrow<Self::X> + Sized,
511            {
512                let low = *low_b.borrow();
513                let high = *high_b.borrow();
514                assert!(low < high, "UniformSampler::sample_single: low >= high");
515                Self::sample_single_inclusive(low, high - 1, rng)
516            }
517
518            #[inline]
519            fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
520            where
521                B1: SampleBorrow<Self::X> + Sized,
522                B2: SampleBorrow<Self::X> + Sized,
523            {
524                let low = *low_b.borrow();
525                let high = *high_b.borrow();
526                assert!(low <= high, "UniformSampler::sample_single_inclusive: low > high");
527                let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned as $u_large;
528                // If the above resulted in wrap-around to 0, the range is $ty::MIN..=$ty::MAX,
529                // and any integer will do.
530                if range == 0 {
531                    return rng.gen();
532                }
533
534                let zone = if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned {
535                    // Using a modulus is faster than the approximation for
536                    // i8 and i16. I suppose we trade the cost of one
537                    // modulus for near-perfect branch prediction.
538                    let unsigned_max: $u_large = ::core::$u_large::MAX;
539                    let ints_to_reject = (unsigned_max - range + 1) % range;
540                    unsigned_max - ints_to_reject
541                } else {
542                    // conservative but fast approximation. `- 1` is necessary to allow the
543                    // same comparison without bias.
544                    (range << range.leading_zeros()).wrapping_sub(1)
545                };
546
547                loop {
548                    let v: $u_large = rng.gen();
549                    let (hi, lo) = v.wmul(range);
550                    if lo <= zone {
551                        return low.wrapping_add(hi as $ty);
552                    }
553                }
554            }
555        }
556    };
557}
558
559uniform_int_impl! { i8, u8, u32 }
560uniform_int_impl! { i16, u16, u32 }
561uniform_int_impl! { i32, u32, u32 }
562uniform_int_impl! { i64, u64, u64 }
563uniform_int_impl! { i128, u128, u128 }
564uniform_int_impl! { isize, usize, usize }
565uniform_int_impl! { u8, u8, u32 }
566uniform_int_impl! { u16, u16, u32 }
567uniform_int_impl! { u32, u32, u32 }
568uniform_int_impl! { u64, u64, u64 }
569uniform_int_impl! { usize, usize, usize }
570uniform_int_impl! { u128, u128, u128 }
571
572#[cfg(feature = "simd_support")]
573macro_rules! uniform_simd_int_impl {
574    ($ty:ident, $unsigned:ident, $u_scalar:ident) => {
575        // The "pick the largest zone that can fit in an `u32`" optimization
576        // is less useful here. Multiple lanes complicate things, we don't
577        // know the PRNG's minimal output size, and casting to a larger vector
578        // is generally a bad idea for SIMD performance. The user can still
579        // implement it manually.
580
581        // TODO: look into `Uniform::<u32x4>::new(0u32, 100)` functionality
582        //       perhaps `impl SampleUniform for $u_scalar`?
583        impl SampleUniform for $ty {
584            type Sampler = UniformInt<$ty>;
585        }
586
587        impl UniformSampler for UniformInt<$ty> {
588            type X = $ty;
589
590            #[inline] // if the range is constant, this helps LLVM to do the
591                      // calculations at compile-time.
592            fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
593                where B1: SampleBorrow<Self::X> + Sized,
594                      B2: SampleBorrow<Self::X> + Sized
595            {
596                let low = *low_b.borrow();
597                let high = *high_b.borrow();
598                assert!(low.lt(high).all(), "Uniform::new called with `low >= high`");
599                UniformSampler::new_inclusive(low, high - 1)
600            }
601
602            #[inline] // if the range is constant, this helps LLVM to do the
603                      // calculations at compile-time.
604            fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
605                where B1: SampleBorrow<Self::X> + Sized,
606                      B2: SampleBorrow<Self::X> + Sized
607            {
608                let low = *low_b.borrow();
609                let high = *high_b.borrow();
610                assert!(low.le(high).all(),
611                        "Uniform::new_inclusive called with `low > high`");
612                let unsigned_max = ::core::$u_scalar::MAX;
613
614                // NOTE: these may need to be replaced with explicitly
615                // wrapping operations if `packed_simd` changes
616                let range: $unsigned = ((high - low) + 1).cast();
617                // `% 0` will panic at runtime.
618                let not_full_range = range.gt($unsigned::splat(0));
619                // replacing 0 with `unsigned_max` allows a faster `select`
620                // with bitwise OR
621                let modulo = not_full_range.select(range, $unsigned::splat(unsigned_max));
622                // wrapping addition
623                let ints_to_reject = (unsigned_max - range + 1) % modulo;
624                // When `range` is 0, `lo` of `v.wmul(range)` will always be
625                // zero which means only one sample is needed.
626                let zone = unsigned_max - ints_to_reject;
627
628                UniformInt {
629                    low,
630                    // These are really $unsigned values, but store as $ty:
631                    range: range.cast(),
632                    z: zone.cast(),
633                }
634            }
635
636            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
637                let range: $unsigned = self.range.cast();
638                let zone: $unsigned = self.z.cast();
639
640                // This might seem very slow, generating a whole new
641                // SIMD vector for every sample rejection. For most uses
642                // though, the chance of rejection is small and provides good
643                // general performance. With multiple lanes, that chance is
644                // multiplied. To mitigate this, we replace only the lanes of
645                // the vector which fail, iteratively reducing the chance of
646                // rejection. The replacement method does however add a little
647                // overhead. Benchmarking or calculating probabilities might
648                // reveal contexts where this replacement method is slower.
649                let mut v: $unsigned = rng.gen();
650                loop {
651                    let (hi, lo) = v.wmul(range);
652                    let mask = lo.le(zone);
653                    if mask.all() {
654                        let hi: $ty = hi.cast();
655                        // wrapping addition
656                        let result = self.low + hi;
657                        // `select` here compiles to a blend operation
658                        // When `range.eq(0).none()` the compare and blend
659                        // operations are avoided.
660                        let v: $ty = v.cast();
661                        return range.gt($unsigned::splat(0)).select(result, v);
662                    }
663                    // Replace only the failing lanes
664                    v = mask.select(v, rng.gen());
665                }
666            }
667        }
668    };
669
670    // bulk implementation
671    ($(($unsigned:ident, $signed:ident),)+ $u_scalar:ident) => {
672        $(
673            uniform_simd_int_impl!($unsigned, $unsigned, $u_scalar);
674            uniform_simd_int_impl!($signed, $unsigned, $u_scalar);
675        )+
676    };
677}
678
679#[cfg(feature = "simd_support")]
680uniform_simd_int_impl! {
681    (u64x2, i64x2),
682    (u64x4, i64x4),
683    (u64x8, i64x8),
684    u64
685}
686
687#[cfg(feature = "simd_support")]
688uniform_simd_int_impl! {
689    (u32x2, i32x2),
690    (u32x4, i32x4),
691    (u32x8, i32x8),
692    (u32x16, i32x16),
693    u32
694}
695
696#[cfg(feature = "simd_support")]
697uniform_simd_int_impl! {
698    (u16x2, i16x2),
699    (u16x4, i16x4),
700    (u16x8, i16x8),
701    (u16x16, i16x16),
702    (u16x32, i16x32),
703    u16
704}
705
706#[cfg(feature = "simd_support")]
707uniform_simd_int_impl! {
708    (u8x2, i8x2),
709    (u8x4, i8x4),
710    (u8x8, i8x8),
711    (u8x16, i8x16),
712    (u8x32, i8x32),
713    (u8x64, i8x64),
714    u8
715}
716
717impl SampleUniform for char {
718    type Sampler = UniformChar;
719}
720
721/// The back-end implementing [`UniformSampler`] for `char`.
722///
723/// Unless you are implementing [`UniformSampler`] for your own type, this type
724/// should not be used directly, use [`Uniform`] instead.
725///
726/// This differs from integer range sampling since the range `0xD800..=0xDFFF`
727/// are used for surrogate pairs in UCS and UTF-16, and consequently are not
728/// valid Unicode code points. We must therefore avoid sampling values in this
729/// range.
730#[derive(Clone, Copy, Debug)]
731#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
732pub struct UniformChar {
733    sampler: UniformInt<u32>,
734}
735
736/// UTF-16 surrogate range start
737const CHAR_SURROGATE_START: u32 = 0xD800;
738/// UTF-16 surrogate range size
739const CHAR_SURROGATE_LEN: u32 = 0xE000 - CHAR_SURROGATE_START;
740
741/// Convert `char` to compressed `u32`
742fn char_to_comp_u32(c: char) -> u32 {
743    match c as u32 {
744        c if c >= CHAR_SURROGATE_START => c - CHAR_SURROGATE_LEN,
745        c => c,
746    }
747}
748
749impl UniformSampler for UniformChar {
750    type X = char;
751
752    #[inline] // if the range is constant, this helps LLVM to do the
753              // calculations at compile-time.
754    fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
755    where
756        B1: SampleBorrow<Self::X> + Sized,
757        B2: SampleBorrow<Self::X> + Sized,
758    {
759        let low = char_to_comp_u32(*low_b.borrow());
760        let high = char_to_comp_u32(*high_b.borrow());
761        let sampler = UniformInt::<u32>::new(low, high);
762        UniformChar { sampler }
763    }
764
765    #[inline] // if the range is constant, this helps LLVM to do the
766              // calculations at compile-time.
767    fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
768    where
769        B1: SampleBorrow<Self::X> + Sized,
770        B2: SampleBorrow<Self::X> + Sized,
771    {
772        let low = char_to_comp_u32(*low_b.borrow());
773        let high = char_to_comp_u32(*high_b.borrow());
774        let sampler = UniformInt::<u32>::new_inclusive(low, high);
775        UniformChar { sampler }
776    }
777
778    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
779        let mut x = self.sampler.sample(rng);
780        if x >= CHAR_SURROGATE_START {
781            x += CHAR_SURROGATE_LEN;
782        }
783        // SAFETY: x must not be in surrogate range or greater than char::MAX.
784        // This relies on range constructors which accept char arguments.
785        // Validity of input char values is assumed.
786        unsafe { core::char::from_u32_unchecked(x) }
787    }
788}
789
790/// The back-end implementing [`UniformSampler`] for floating-point types.
791///
792/// Unless you are implementing [`UniformSampler`] for your own type, this type
793/// should not be used directly, use [`Uniform`] instead.
794///
795/// # Implementation notes
796///
797/// Instead of generating a float in the `[0, 1)` range using [`Standard`], the
798/// `UniformFloat` implementation converts the output of an PRNG itself. This
799/// way one or two steps can be optimized out.
800///
801/// The floats are first converted to a value in the `[1, 2)` interval using a
802/// transmute-based method, and then mapped to the expected range with a
803/// multiply and addition. Values produced this way have what equals 23 bits of
804/// random digits for an `f32`, and 52 for an `f64`.
805///
806/// [`new`]: UniformSampler::new
807/// [`new_inclusive`]: UniformSampler::new_inclusive
808/// [`Standard`]: crate::distributions::Standard
809#[derive(Clone, Copy, Debug, PartialEq)]
810#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
811pub struct UniformFloat<X> {
812    low: X,
813    scale: X,
814}
815
816macro_rules! uniform_float_impl {
817    ($ty:ty, $uty:ident, $f_scalar:ident, $u_scalar:ident, $bits_to_discard:expr) => {
818        impl SampleUniform for $ty {
819            type Sampler = UniformFloat<$ty>;
820        }
821
822        impl UniformSampler for UniformFloat<$ty> {
823            type X = $ty;
824
825            fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
826            where
827                B1: SampleBorrow<Self::X> + Sized,
828                B2: SampleBorrow<Self::X> + Sized,
829            {
830                let low = *low_b.borrow();
831                let high = *high_b.borrow();
832                debug_assert!(
833                    low.all_finite(),
834                    "Uniform::new called with `low` non-finite."
835                );
836                debug_assert!(
837                    high.all_finite(),
838                    "Uniform::new called with `high` non-finite."
839                );
840                assert!(low.all_lt(high), "Uniform::new called with `low >= high`");
841                let max_rand = <$ty>::splat(
842                    (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0,
843                );
844
845                let mut scale = high - low;
846                assert!(scale.all_finite(), "Uniform::new: range overflow");
847
848                loop {
849                    let mask = (scale * max_rand + low).ge_mask(high);
850                    if mask.none() {
851                        break;
852                    }
853                    scale = scale.decrease_masked(mask);
854                }
855
856                debug_assert!(<$ty>::splat(0.0).all_le(scale));
857
858                UniformFloat { low, scale }
859            }
860
861            fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
862            where
863                B1: SampleBorrow<Self::X> + Sized,
864                B2: SampleBorrow<Self::X> + Sized,
865            {
866                let low = *low_b.borrow();
867                let high = *high_b.borrow();
868                debug_assert!(
869                    low.all_finite(),
870                    "Uniform::new_inclusive called with `low` non-finite."
871                );
872                debug_assert!(
873                    high.all_finite(),
874                    "Uniform::new_inclusive called with `high` non-finite."
875                );
876                assert!(
877                    low.all_le(high),
878                    "Uniform::new_inclusive called with `low > high`"
879                );
880                let max_rand = <$ty>::splat(
881                    (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0,
882                );
883
884                let mut scale = (high - low) / max_rand;
885                assert!(scale.all_finite(), "Uniform::new_inclusive: range overflow");
886
887                loop {
888                    let mask = (scale * max_rand + low).gt_mask(high);
889                    if mask.none() {
890                        break;
891                    }
892                    scale = scale.decrease_masked(mask);
893                }
894
895                debug_assert!(<$ty>::splat(0.0).all_le(scale));
896
897                UniformFloat { low, scale }
898            }
899
900            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
901                // Generate a value in the range [1, 2)
902                let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0);
903
904                // Get a value in the range [0, 1) in order to avoid
905                // overflowing into infinity when multiplying with scale
906                let value0_1 = value1_2 - 1.0;
907
908                // We don't use `f64::mul_add`, because it is not available with
909                // `no_std`. Furthermore, it is slower for some targets (but
910                // faster for others). However, the order of multiplication and
911                // addition is important, because on some platforms (e.g. ARM)
912                // it will be optimized to a single (non-FMA) instruction.
913                value0_1 * self.scale + self.low
914            }
915
916            #[inline]
917            fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
918            where
919                B1: SampleBorrow<Self::X> + Sized,
920                B2: SampleBorrow<Self::X> + Sized,
921            {
922                let low = *low_b.borrow();
923                let high = *high_b.borrow();
924                debug_assert!(
925                    low.all_finite(),
926                    "UniformSampler::sample_single called with `low` non-finite."
927                );
928                debug_assert!(
929                    high.all_finite(),
930                    "UniformSampler::sample_single called with `high` non-finite."
931                );
932                assert!(
933                    low.all_lt(high),
934                    "UniformSampler::sample_single: low >= high"
935                );
936                let mut scale = high - low;
937                assert!(scale.all_finite(), "UniformSampler::sample_single: range overflow");
938
939                loop {
940                    // Generate a value in the range [1, 2)
941                    let value1_2 =
942                        (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0);
943
944                    // Get a value in the range [0, 1) in order to avoid
945                    // overflowing into infinity when multiplying with scale
946                    let value0_1 = value1_2 - 1.0;
947
948                    // Doing multiply before addition allows some architectures
949                    // to use a single instruction.
950                    let res = value0_1 * scale + low;
951
952                    debug_assert!(low.all_le(res) || !scale.all_finite());
953                    if res.all_lt(high) {
954                        return res;
955                    }
956
957                    // This handles a number of edge cases.
958                    // * `low` or `high` is NaN. In this case `scale` and
959                    //   `res` are going to end up as NaN.
960                    // * `low` is negative infinity and `high` is finite.
961                    //   `scale` is going to be infinite and `res` will be
962                    //   NaN.
963                    // * `high` is positive infinity and `low` is finite.
964                    //   `scale` is going to be infinite and `res` will
965                    //   be infinite or NaN (if value0_1 is 0).
966                    // * `low` is negative infinity and `high` is positive
967                    //   infinity. `scale` will be infinite and `res` will
968                    //   be NaN.
969                    // * `low` and `high` are finite, but `high - low`
970                    //   overflows to infinite. `scale` will be infinite
971                    //   and `res` will be infinite or NaN (if value0_1 is 0).
972                    // So if `high` or `low` are non-finite, we are guaranteed
973                    // to fail the `res < high` check above and end up here.
974                    //
975                    // While we technically should check for non-finite `low`
976                    // and `high` before entering the loop, by doing the checks
977                    // here instead, we allow the common case to avoid these
978                    // checks. But we are still guaranteed that if `low` or
979                    // `high` are non-finite we'll end up here and can do the
980                    // appropriate checks.
981                    //
982                    // Likewise `high - low` overflowing to infinity is also
983                    // rare, so handle it here after the common case.
984                    let mask = !scale.finite_mask();
985                    if mask.any() {
986                        assert!(
987                            low.all_finite() && high.all_finite(),
988                            "Uniform::sample_single: low and high must be finite"
989                        );
990                        scale = scale.decrease_masked(mask);
991                    }
992                }
993            }
994        }
995    };
996}
997
998uniform_float_impl! { f32, u32, f32, u32, 32 - 23 }
999uniform_float_impl! { f64, u64, f64, u64, 64 - 52 }
1000
1001#[cfg(feature = "simd_support")]
1002uniform_float_impl! { f32x2, u32x2, f32, u32, 32 - 23 }
1003#[cfg(feature = "simd_support")]
1004uniform_float_impl! { f32x4, u32x4, f32, u32, 32 - 23 }
1005#[cfg(feature = "simd_support")]
1006uniform_float_impl! { f32x8, u32x8, f32, u32, 32 - 23 }
1007#[cfg(feature = "simd_support")]
1008uniform_float_impl! { f32x16, u32x16, f32, u32, 32 - 23 }
1009
1010#[cfg(feature = "simd_support")]
1011uniform_float_impl! { f64x2, u64x2, f64, u64, 64 - 52 }
1012#[cfg(feature = "simd_support")]
1013uniform_float_impl! { f64x4, u64x4, f64, u64, 64 - 52 }
1014#[cfg(feature = "simd_support")]
1015uniform_float_impl! { f64x8, u64x8, f64, u64, 64 - 52 }
1016
1017
1018/// The back-end implementing [`UniformSampler`] for `Duration`.
1019///
1020/// Unless you are implementing [`UniformSampler`] for your own types, this type
1021/// should not be used directly, use [`Uniform`] instead.
1022#[derive(Clone, Copy, Debug)]
1023#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
1024pub struct UniformDuration {
1025    mode: UniformDurationMode,
1026    offset: u32,
1027}
1028
1029#[derive(Debug, Copy, Clone)]
1030#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
1031enum UniformDurationMode {
1032    Small {
1033        secs: u64,
1034        nanos: Uniform<u32>,
1035    },
1036    Medium {
1037        nanos: Uniform<u64>,
1038    },
1039    Large {
1040        max_secs: u64,
1041        max_nanos: u32,
1042        secs: Uniform<u64>,
1043    },
1044}
1045
1046impl SampleUniform for Duration {
1047    type Sampler = UniformDuration;
1048}
1049
1050impl UniformSampler for UniformDuration {
1051    type X = Duration;
1052
1053    #[inline]
1054    fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
1055    where
1056        B1: SampleBorrow<Self::X> + Sized,
1057        B2: SampleBorrow<Self::X> + Sized,
1058    {
1059        let low = *low_b.borrow();
1060        let high = *high_b.borrow();
1061        assert!(low < high, "Uniform::new called with `low >= high`");
1062        UniformDuration::new_inclusive(low, high - Duration::new(0, 1))
1063    }
1064
1065    #[inline]
1066    fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
1067    where
1068        B1: SampleBorrow<Self::X> + Sized,
1069        B2: SampleBorrow<Self::X> + Sized,
1070    {
1071        let low = *low_b.borrow();
1072        let high = *high_b.borrow();
1073        assert!(
1074            low <= high,
1075            "Uniform::new_inclusive called with `low > high`"
1076        );
1077
1078        let low_s = low.as_secs();
1079        let low_n = low.subsec_nanos();
1080        let mut high_s = high.as_secs();
1081        let mut high_n = high.subsec_nanos();
1082
1083        if high_n < low_n {
1084            high_s -= 1;
1085            high_n += 1_000_000_000;
1086        }
1087
1088        let mode = if low_s == high_s {
1089            UniformDurationMode::Small {
1090                secs: low_s,
1091                nanos: Uniform::new_inclusive(low_n, high_n),
1092            }
1093        } else {
1094            let max = high_s
1095                .checked_mul(1_000_000_000)
1096                .and_then(|n| n.checked_add(u64::from(high_n)));
1097
1098            if let Some(higher_bound) = max {
1099                let lower_bound = low_s * 1_000_000_000 + u64::from(low_n);
1100                UniformDurationMode::Medium {
1101                    nanos: Uniform::new_inclusive(lower_bound, higher_bound),
1102                }
1103            } else {
1104                // An offset is applied to simplify generation of nanoseconds
1105                let max_nanos = high_n - low_n;
1106                UniformDurationMode::Large {
1107                    max_secs: high_s,
1108                    max_nanos,
1109                    secs: Uniform::new_inclusive(low_s, high_s),
1110                }
1111            }
1112        };
1113        UniformDuration {
1114            mode,
1115            offset: low_n,
1116        }
1117    }
1118
1119    #[inline]
1120    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration {
1121        match self.mode {
1122            UniformDurationMode::Small { secs, nanos } => {
1123                let n = nanos.sample(rng);
1124                Duration::new(secs, n)
1125            }
1126            UniformDurationMode::Medium { nanos } => {
1127                let nanos = nanos.sample(rng);
1128                Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32)
1129            }
1130            UniformDurationMode::Large {
1131                max_secs,
1132                max_nanos,
1133                secs,
1134            } => {
1135                // constant folding means this is at least as fast as `Rng::sample(Range)`
1136                let nano_range = Uniform::new(0, 1_000_000_000);
1137                loop {
1138                    let s = secs.sample(rng);
1139                    let n = nano_range.sample(rng);
1140                    if !(s == max_secs && n > max_nanos) {
1141                        let sum = n + self.offset;
1142                        break Duration::new(s, sum);
1143                    }
1144                }
1145            }
1146        }
1147    }
1148}
1149
1150#[cfg(test)]
1151mod tests {
1152    use super::*;
1153    use crate::rngs::mock::StepRng;
1154
1155    #[test]
1156    #[cfg(feature = "serde1")]
1157    fn test_serialization_uniform_duration() {
1158        let distr = UniformDuration::new(Duration::from_secs(10), Duration::from_secs(60));
1159        let de_distr: UniformDuration = bincode::deserialize(&bincode::serialize(&distr).unwrap()).unwrap();
1160        assert_eq!(
1161            distr.offset, de_distr.offset
1162        );
1163        match (distr.mode, de_distr.mode) {
1164            (UniformDurationMode::Small {secs: a_secs, nanos: a_nanos}, UniformDurationMode::Small {secs, nanos}) => {
1165                assert_eq!(a_secs, secs);
1166
1167                assert_eq!(a_nanos.0.low, nanos.0.low);
1168                assert_eq!(a_nanos.0.range, nanos.0.range);
1169                assert_eq!(a_nanos.0.z, nanos.0.z);
1170            }
1171            (UniformDurationMode::Medium {nanos: a_nanos} , UniformDurationMode::Medium {nanos}) => {
1172                assert_eq!(a_nanos.0.low, nanos.0.low);
1173                assert_eq!(a_nanos.0.range, nanos.0.range);
1174                assert_eq!(a_nanos.0.z, nanos.0.z);
1175            }
1176            (UniformDurationMode::Large {max_secs:a_max_secs, max_nanos:a_max_nanos, secs:a_secs}, UniformDurationMode::Large {max_secs, max_nanos, secs} ) => {
1177                assert_eq!(a_max_secs, max_secs);
1178                assert_eq!(a_max_nanos, max_nanos);
1179
1180                assert_eq!(a_secs.0.low, secs.0.low);
1181                assert_eq!(a_secs.0.range, secs.0.range);
1182                assert_eq!(a_secs.0.z, secs.0.z);
1183            }
1184            _ => panic!("`UniformDurationMode` was not serialized/deserialized correctly")
1185        }
1186    }
1187    
1188    #[test]
1189    #[cfg(feature = "serde1")]
1190    fn test_uniform_serialization() {
1191        let unit_box: Uniform<i32>  = Uniform::new(-1, 1);
1192        let de_unit_box: Uniform<i32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
1193
1194        assert_eq!(unit_box.0.low, de_unit_box.0.low);
1195        assert_eq!(unit_box.0.range, de_unit_box.0.range);
1196        assert_eq!(unit_box.0.z, de_unit_box.0.z);
1197
1198        let unit_box: Uniform<f32> = Uniform::new(-1., 1.);
1199        let de_unit_box: Uniform<f32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
1200
1201        assert_eq!(unit_box.0.low, de_unit_box.0.low);
1202        assert_eq!(unit_box.0.scale, de_unit_box.0.scale);
1203    }
1204
1205    #[should_panic]
1206    #[test]
1207    fn test_uniform_bad_limits_equal_int() {
1208        Uniform::new(10, 10);
1209    }
1210
1211    #[test]
1212    fn test_uniform_good_limits_equal_int() {
1213        let mut rng = crate::test::rng(804);
1214        let dist = Uniform::new_inclusive(10, 10);
1215        for _ in 0..20 {
1216            assert_eq!(rng.sample(dist), 10);
1217        }
1218    }
1219
1220    #[should_panic]
1221    #[test]
1222    fn test_uniform_bad_limits_flipped_int() {
1223        Uniform::new(10, 5);
1224    }
1225
1226    #[test]
1227    #[cfg_attr(miri, ignore)] // Miri is too slow
1228    fn test_integers() {
1229        use core::{i128, u128};
1230        use core::{i16, i32, i64, i8, isize};
1231        use core::{u16, u32, u64, u8, usize};
1232
1233        let mut rng = crate::test::rng(251);
1234        macro_rules! t {
1235            ($ty:ident, $v:expr, $le:expr, $lt:expr) => {{
1236                for &(low, high) in $v.iter() {
1237                    let my_uniform = Uniform::new(low, high);
1238                    for _ in 0..1000 {
1239                        let v: $ty = rng.sample(my_uniform);
1240                        assert!($le(low, v) && $lt(v, high));
1241                    }
1242
1243                    let my_uniform = Uniform::new_inclusive(low, high);
1244                    for _ in 0..1000 {
1245                        let v: $ty = rng.sample(my_uniform);
1246                        assert!($le(low, v) && $le(v, high));
1247                    }
1248
1249                    let my_uniform = Uniform::new(&low, high);
1250                    for _ in 0..1000 {
1251                        let v: $ty = rng.sample(my_uniform);
1252                        assert!($le(low, v) && $lt(v, high));
1253                    }
1254
1255                    let my_uniform = Uniform::new_inclusive(&low, &high);
1256                    for _ in 0..1000 {
1257                        let v: $ty = rng.sample(my_uniform);
1258                        assert!($le(low, v) && $le(v, high));
1259                    }
1260
1261                    for _ in 0..1000 {
1262                        let v = <$ty as SampleUniform>::Sampler::sample_single(low, high, &mut rng);
1263                        assert!($le(low, v) && $lt(v, high));
1264                    }
1265
1266                    for _ in 0..1000 {
1267                        let v = <$ty as SampleUniform>::Sampler::sample_single_inclusive(low, high, &mut rng);
1268                        assert!($le(low, v) && $le(v, high));
1269                    }
1270                }
1271            }};
1272
1273            // scalar bulk
1274            ($($ty:ident),*) => {{
1275                $(t!(
1276                    $ty,
1277                    [(0, 10), (10, 127), ($ty::MIN, $ty::MAX)],
1278                    |x, y| x <= y,
1279                    |x, y| x < y
1280                );)*
1281            }};
1282
1283            // simd bulk
1284            ($($ty:ident),* => $scalar:ident) => {{
1285                $(t!(
1286                    $ty,
1287                    [
1288                        ($ty::splat(0), $ty::splat(10)),
1289                        ($ty::splat(10), $ty::splat(127)),
1290                        ($ty::splat($scalar::MIN), $ty::splat($scalar::MAX)),
1291                    ],
1292                    |x: $ty, y| x.le(y).all(),
1293                    |x: $ty, y| x.lt(y).all()
1294                );)*
1295            }};
1296        }
1297        t!(i8, i16, i32, i64, isize, u8, u16, u32, u64, usize, i128, u128);
1298
1299        #[cfg(feature = "simd_support")]
1300        {
1301            t!(u8x2, u8x4, u8x8, u8x16, u8x32, u8x64 => u8);
1302            t!(i8x2, i8x4, i8x8, i8x16, i8x32, i8x64 => i8);
1303            t!(u16x2, u16x4, u16x8, u16x16, u16x32 => u16);
1304            t!(i16x2, i16x4, i16x8, i16x16, i16x32 => i16);
1305            t!(u32x2, u32x4, u32x8, u32x16 => u32);
1306            t!(i32x2, i32x4, i32x8, i32x16 => i32);
1307            t!(u64x2, u64x4, u64x8 => u64);
1308            t!(i64x2, i64x4, i64x8 => i64);
1309        }
1310    }
1311
1312    #[test]
1313    #[cfg_attr(miri, ignore)] // Miri is too slow
1314    fn test_char() {
1315        let mut rng = crate::test::rng(891);
1316        let mut max = core::char::from_u32(0).unwrap();
1317        for _ in 0..100 {
1318            let c = rng.gen_range('A'..='Z');
1319            assert!(('A'..='Z').contains(&c));
1320            max = max.max(c);
1321        }
1322        assert_eq!(max, 'Z');
1323        let d = Uniform::new(
1324            core::char::from_u32(0xD7F0).unwrap(),
1325            core::char::from_u32(0xE010).unwrap(),
1326        );
1327        for _ in 0..100 {
1328            let c = d.sample(&mut rng);
1329            assert!((c as u32) < 0xD800 || (c as u32) > 0xDFFF);
1330        }
1331    }
1332
1333    #[test]
1334    #[cfg_attr(miri, ignore)] // Miri is too slow
1335    fn test_floats() {
1336        let mut rng = crate::test::rng(252);
1337        let mut zero_rng = StepRng::new(0, 0);
1338        let mut max_rng = StepRng::new(0xffff_ffff_ffff_ffff, 0);
1339        macro_rules! t {
1340            ($ty:ty, $f_scalar:ident, $bits_shifted:expr) => {{
1341                let v: &[($f_scalar, $f_scalar)] = &[
1342                    (0.0, 100.0),
1343                    (-1e35, -1e25),
1344                    (1e-35, 1e-25),
1345                    (-1e35, 1e35),
1346                    (<$f_scalar>::from_bits(0), <$f_scalar>::from_bits(3)),
1347                    (-<$f_scalar>::from_bits(10), -<$f_scalar>::from_bits(1)),
1348                    (-<$f_scalar>::from_bits(5), 0.0),
1349                    (-<$f_scalar>::from_bits(7), -0.0),
1350                    (0.1 * ::core::$f_scalar::MAX, ::core::$f_scalar::MAX),
1351                    (-::core::$f_scalar::MAX * 0.2, ::core::$f_scalar::MAX * 0.7),
1352                ];
1353                for &(low_scalar, high_scalar) in v.iter() {
1354                    for lane in 0..<$ty>::lanes() {
1355                        let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
1356                        let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
1357                        let my_uniform = Uniform::new(low, high);
1358                        let my_incl_uniform = Uniform::new_inclusive(low, high);
1359                        for _ in 0..100 {
1360                            let v = rng.sample(my_uniform).extract(lane);
1361                            assert!(low_scalar <= v && v < high_scalar);
1362                            let v = rng.sample(my_incl_uniform).extract(lane);
1363                            assert!(low_scalar <= v && v <= high_scalar);
1364                            let v = <$ty as SampleUniform>::Sampler
1365                                ::sample_single(low, high, &mut rng).extract(lane);
1366                            assert!(low_scalar <= v && v < high_scalar);
1367                        }
1368
1369                        assert_eq!(
1370                            rng.sample(Uniform::new_inclusive(low, low)).extract(lane),
1371                            low_scalar
1372                        );
1373
1374                        assert_eq!(zero_rng.sample(my_uniform).extract(lane), low_scalar);
1375                        assert_eq!(zero_rng.sample(my_incl_uniform).extract(lane), low_scalar);
1376                        assert_eq!(<$ty as SampleUniform>::Sampler
1377                            ::sample_single(low, high, &mut zero_rng)
1378                            .extract(lane), low_scalar);
1379                        assert!(max_rng.sample(my_uniform).extract(lane) < high_scalar);
1380                        assert!(max_rng.sample(my_incl_uniform).extract(lane) <= high_scalar);
1381
1382                        // Don't run this test for really tiny differences between high and low
1383                        // since for those rounding might result in selecting high for a very
1384                        // long time.
1385                        if (high_scalar - low_scalar) > 0.0001 {
1386                            let mut lowering_max_rng = StepRng::new(
1387                                0xffff_ffff_ffff_ffff,
1388                                (-1i64 << $bits_shifted) as u64,
1389                            );
1390                            assert!(
1391                                <$ty as SampleUniform>::Sampler
1392                                    ::sample_single(low, high, &mut lowering_max_rng)
1393                                    .extract(lane) < high_scalar
1394                            );
1395                        }
1396                    }
1397                }
1398
1399                assert_eq!(
1400                    rng.sample(Uniform::new_inclusive(
1401                        ::core::$f_scalar::MAX,
1402                        ::core::$f_scalar::MAX
1403                    )),
1404                    ::core::$f_scalar::MAX
1405                );
1406                assert_eq!(
1407                    rng.sample(Uniform::new_inclusive(
1408                        -::core::$f_scalar::MAX,
1409                        -::core::$f_scalar::MAX
1410                    )),
1411                    -::core::$f_scalar::MAX
1412                );
1413            }};
1414        }
1415
1416        t!(f32, f32, 32 - 23);
1417        t!(f64, f64, 64 - 52);
1418        #[cfg(feature = "simd_support")]
1419        {
1420            t!(f32x2, f32, 32 - 23);
1421            t!(f32x4, f32, 32 - 23);
1422            t!(f32x8, f32, 32 - 23);
1423            t!(f32x16, f32, 32 - 23);
1424            t!(f64x2, f64, 64 - 52);
1425            t!(f64x4, f64, 64 - 52);
1426            t!(f64x8, f64, 64 - 52);
1427        }
1428    }
1429
1430    #[test]
1431    #[should_panic]
1432    fn test_float_overflow() {
1433        let _ = Uniform::from(::core::f64::MIN..::core::f64::MAX);
1434    }
1435
1436    #[test]
1437    #[should_panic]
1438    fn test_float_overflow_single() {
1439        let mut rng = crate::test::rng(252);
1440        rng.gen_range(::core::f64::MIN..::core::f64::MAX);
1441    }
1442
1443    #[test]
1444    #[cfg(all(
1445        feature = "std",
1446        not(target_arch = "wasm32"),
1447        not(target_arch = "asmjs")
1448    ))]
1449    fn test_float_assertions() {
1450        use super::SampleUniform;
1451        use std::panic::catch_unwind;
1452        fn range<T: SampleUniform>(low: T, high: T) {
1453            let mut rng = crate::test::rng(253);
1454            T::Sampler::sample_single(low, high, &mut rng);
1455        }
1456
1457        macro_rules! t {
1458            ($ty:ident, $f_scalar:ident) => {{
1459                let v: &[($f_scalar, $f_scalar)] = &[
1460                    (::std::$f_scalar::NAN, 0.0),
1461                    (1.0, ::std::$f_scalar::NAN),
1462                    (::std::$f_scalar::NAN, ::std::$f_scalar::NAN),
1463                    (1.0, 0.5),
1464                    (::std::$f_scalar::MAX, -::std::$f_scalar::MAX),
1465                    (::std::$f_scalar::INFINITY, ::std::$f_scalar::INFINITY),
1466                    (
1467                        ::std::$f_scalar::NEG_INFINITY,
1468                        ::std::$f_scalar::NEG_INFINITY,
1469                    ),
1470                    (::std::$f_scalar::NEG_INFINITY, 5.0),
1471                    (5.0, ::std::$f_scalar::INFINITY),
1472                    (::std::$f_scalar::NAN, ::std::$f_scalar::INFINITY),
1473                    (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NAN),
1474                    (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::INFINITY),
1475                ];
1476                for &(low_scalar, high_scalar) in v.iter() {
1477                    for lane in 0..<$ty>::lanes() {
1478                        let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
1479                        let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
1480                        assert!(catch_unwind(|| range(low, high)).is_err());
1481                        assert!(catch_unwind(|| Uniform::new(low, high)).is_err());
1482                        assert!(catch_unwind(|| Uniform::new_inclusive(low, high)).is_err());
1483                        assert!(catch_unwind(|| range(low, low)).is_err());
1484                        assert!(catch_unwind(|| Uniform::new(low, low)).is_err());
1485                    }
1486                }
1487            }};
1488        }
1489
1490        t!(f32, f32);
1491        t!(f64, f64);
1492        #[cfg(feature = "simd_support")]
1493        {
1494            t!(f32x2, f32);
1495            t!(f32x4, f32);
1496            t!(f32x8, f32);
1497            t!(f32x16, f32);
1498            t!(f64x2, f64);
1499            t!(f64x4, f64);
1500            t!(f64x8, f64);
1501        }
1502    }
1503
1504
1505    #[test]
1506    #[cfg_attr(miri, ignore)] // Miri is too slow
1507    fn test_durations() {
1508        let mut rng = crate::test::rng(253);
1509
1510        let v = &[
1511            (Duration::new(10, 50000), Duration::new(100, 1234)),
1512            (Duration::new(0, 100), Duration::new(1, 50)),
1513            (
1514                Duration::new(0, 0),
1515                Duration::new(u64::max_value(), 999_999_999),
1516            ),
1517        ];
1518        for &(low, high) in v.iter() {
1519            let my_uniform = Uniform::new(low, high);
1520            for _ in 0..1000 {
1521                let v = rng.sample(my_uniform);
1522                assert!(low <= v && v < high);
1523            }
1524        }
1525    }
1526
1527    #[test]
1528    fn test_custom_uniform() {
1529        use crate::distributions::uniform::{
1530            SampleBorrow, SampleUniform, UniformFloat, UniformSampler,
1531        };
1532        #[derive(Clone, Copy, PartialEq, PartialOrd)]
1533        struct MyF32 {
1534            x: f32,
1535        }
1536        #[derive(Clone, Copy, Debug)]
1537        struct UniformMyF32(UniformFloat<f32>);
1538        impl UniformSampler for UniformMyF32 {
1539            type X = MyF32;
1540
1541            fn new<B1, B2>(low: B1, high: B2) -> Self
1542            where
1543                B1: SampleBorrow<Self::X> + Sized,
1544                B2: SampleBorrow<Self::X> + Sized,
1545            {
1546                UniformMyF32(UniformFloat::<f32>::new(low.borrow().x, high.borrow().x))
1547            }
1548
1549            fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
1550            where
1551                B1: SampleBorrow<Self::X> + Sized,
1552                B2: SampleBorrow<Self::X> + Sized,
1553            {
1554                UniformSampler::new(low, high)
1555            }
1556
1557            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
1558                MyF32 {
1559                    x: self.0.sample(rng),
1560                }
1561            }
1562        }
1563        impl SampleUniform for MyF32 {
1564            type Sampler = UniformMyF32;
1565        }
1566
1567        let (low, high) = (MyF32 { x: 17.0f32 }, MyF32 { x: 22.0f32 });
1568        let uniform = Uniform::new(low, high);
1569        let mut rng = crate::test::rng(804);
1570        for _ in 0..100 {
1571            let x: MyF32 = rng.sample(uniform);
1572            assert!(low <= x && x < high);
1573        }
1574    }
1575
1576    #[test]
1577    fn test_uniform_from_std_range() {
1578        let r = Uniform::from(2u32..7);
1579        assert_eq!(r.0.low, 2);
1580        assert_eq!(r.0.range, 5);
1581        let r = Uniform::from(2.0f64..7.0);
1582        assert_eq!(r.0.low, 2.0);
1583        assert_eq!(r.0.scale, 5.0);
1584    }
1585
1586    #[test]
1587    fn test_uniform_from_std_range_inclusive() {
1588        let r = Uniform::from(2u32..=6);
1589        assert_eq!(r.0.low, 2);
1590        assert_eq!(r.0.range, 5);
1591        let r = Uniform::from(2.0f64..=7.0);
1592        assert_eq!(r.0.low, 2.0);
1593        assert!(r.0.scale > 5.0);
1594        assert!(r.0.scale < 5.0 + 1e-14);
1595    }
1596
1597    #[test]
1598    fn value_stability() {
1599        fn test_samples<T: SampleUniform + Copy + core::fmt::Debug + PartialEq>(
1600            lb: T, ub: T, expected_single: &[T], expected_multiple: &[T],
1601        ) where Uniform<T>: Distribution<T> {
1602            let mut rng = crate::test::rng(897);
1603            let mut buf = [lb; 3];
1604
1605            for x in &mut buf {
1606                *x = T::Sampler::sample_single(lb, ub, &mut rng);
1607            }
1608            assert_eq!(&buf, expected_single);
1609
1610            let distr = Uniform::new(lb, ub);
1611            for x in &mut buf {
1612                *x = rng.sample(&distr);
1613            }
1614            assert_eq!(&buf, expected_multiple);
1615        }
1616
1617        // We test on a sub-set of types; possibly we should do more.
1618        // TODO: SIMD types
1619
1620        test_samples(11u8, 219, &[17, 66, 214], &[181, 93, 165]);
1621        test_samples(11u32, 219, &[17, 66, 214], &[181, 93, 165]);
1622
1623        test_samples(0f32, 1e-2f32, &[0.0003070104, 0.0026630748, 0.00979833], &[
1624            0.008194133,
1625            0.00398172,
1626            0.007428536,
1627        ]);
1628        test_samples(
1629            -1e10f64,
1630            1e10f64,
1631            &[-4673848682.871551, 6388267422.932352, 4857075081.198343],
1632            &[1173375212.1808167, 1917642852.109581, 2365076174.3153973],
1633        );
1634
1635        test_samples(
1636            Duration::new(2, 0),
1637            Duration::new(4, 0),
1638            &[
1639                Duration::new(2, 532615131),
1640                Duration::new(3, 638826742),
1641                Duration::new(3, 485707508),
1642            ],
1643            &[
1644                Duration::new(3, 117337521),
1645                Duration::new(3, 191764285),
1646                Duration::new(3, 236507617),
1647            ],
1648        );
1649    }
1650
1651    #[test]
1652    fn uniform_distributions_can_be_compared() {
1653        assert_eq!(Uniform::new(1.0, 2.0), Uniform::new(1.0, 2.0));
1654
1655        // To cover UniformInt
1656        assert_eq!(Uniform::new(1 as u32, 2 as u32), Uniform::new(1 as u32, 2 as u32));
1657    }
1658}