halo2_axiom/plonk/
prover.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
#[cfg(feature = "profile")]
use ark_std::{end_timer, start_timer};
use ff::{Field, WithSmallOrderMulGroup};
use group::Curve;
use rand_core::RngCore;

use std::hash::Hash;
use std::marker::PhantomData;
use std::ops::RangeTo;

#[cfg(feature = "multicore")]
use crate::multicore::IndexedParallelIterator;
use crate::multicore::{IntoParallelIterator, ParallelIterator};
use std::{collections::HashMap, iter};

use super::{
    circuit::{
        sealed::{self},
        Advice, Any, Assignment, Challenge, Circuit, Column, ConstraintSystem, Fixed, FloorPlanner,
        Instance, Selector,
    },
    lookup, permutation, vanishing, ChallengeBeta, ChallengeGamma, ChallengeTheta, ChallengeX,
    ChallengeY, Error, ProvingKey,
};

use crate::{
    arithmetic::{eval_polynomial, CurveAffine},
    circuit::Value,
    plonk::Assigned,
    poly::{
        commitment::{Blind, CommitmentScheme, Params, Prover},
        Basis, Coeff, LagrangeCoeff, Polynomial, ProverQuery,
    },
};
use crate::{
    poly::batch_invert_assigned,
    transcript::{EncodedChallenge, TranscriptWrite},
};

/// This creates a proof for the provided `circuit` when given the public
/// parameters `params` and the proving key [`ProvingKey`] that was
/// generated previously for the same circuit. The provided `instances`
/// are zero-padded internally.
pub fn create_proof<
    'params,
    'a,
    Scheme: CommitmentScheme,
    P: Prover<'params, Scheme>,
    E: EncodedChallenge<Scheme::Curve>,
    R: RngCore + 'a,
    T: TranscriptWrite<Scheme::Curve, E>,
    ConcreteCircuit: Circuit<Scheme::Scalar>,
>(
    params: &'params Scheme::ParamsProver,
    pk: &ProvingKey<Scheme::Curve>,
    circuits: &[ConcreteCircuit],
    instances: &[&[&'a [Scheme::Scalar]]],
    mut rng: R,
    mut transcript: &'a mut T,
) -> Result<(), Error>
where
    Scheme::Scalar: Hash + WithSmallOrderMulGroup<3>,
    <Scheme as CommitmentScheme>::ParamsProver: Sync,
{
    if circuits.len() != instances.len() {
        return Err(Error::InvalidInstances);
    }

    for instance in instances.iter() {
        if instance.len() != pk.vk.cs.num_instance_columns {
            return Err(Error::InvalidInstances);
        }
    }

    // Hash verification key into transcript
    pk.vk.hash_into(transcript)?;

    let domain = &pk.vk.domain;
    let mut meta = ConstraintSystem::default();
    #[cfg(feature = "circuit-params")]
    let config = ConcreteCircuit::configure_with_params(&mut meta, circuits[0].params());
    #[cfg(not(feature = "circuit-params"))]
    let config = ConcreteCircuit::configure(&mut meta);

    // Selector optimizations cannot be applied here; use the ConstraintSystem
    // from the verification key.
    let meta = &pk.vk.cs;

    struct InstanceSingle<C: CurveAffine> {
        pub instance_values: Vec<Polynomial<C::Scalar, LagrangeCoeff>>,
        pub instance_polys: Vec<Polynomial<C::Scalar, Coeff>>,
    }

    let instance: Vec<InstanceSingle<Scheme::Curve>> = instances
        .iter()
        .map(|instance| -> InstanceSingle<Scheme::Curve> {
            let instance_values = instance
                .iter()
                .map(|values| {
                    let mut poly = domain.empty_lagrange();
                    assert_eq!(poly.len(), params.n() as usize);
                    if values.len() > (poly.len() - (meta.blinding_factors() + 1)) {
                        panic!("Error::InstanceTooLarge");
                    }
                    for (poly, value) in poly.iter_mut().zip(values.iter()) {
                        *poly = *value;
                    }
                    poly
                })
                .collect::<Vec<_>>();

            let instance_polys: Vec<_> = instance_values
                .iter()
                .map(|poly| {
                    let lagrange_vec = domain.lagrange_from_vec(poly.to_vec());
                    domain.lagrange_to_coeff(lagrange_vec)
                })
                .collect();

            InstanceSingle {
                instance_values,
                instance_polys,
            }
        })
        .collect();

    #[derive(Clone)]
    struct AdviceSingle<C: CurveAffine, B: Basis> {
        pub advice_polys: Vec<Polynomial<C::Scalar, B>>,
        pub advice_blinds: Vec<Blind<C::Scalar>>,
    }

    struct WitnessCollection<'params, 'a, 'b, Scheme, P, C, E, R, T>
    where
        Scheme: CommitmentScheme<Curve = C>,
        P: Prover<'params, Scheme>,
        C: CurveAffine,
        E: EncodedChallenge<C>,
        R: RngCore + 'a,
        T: TranscriptWrite<C, E>,
    {
        params: &'params Scheme::ParamsProver,
        current_phase: sealed::Phase,
        advice: Vec<Polynomial<Assigned<C::Scalar>, LagrangeCoeff>>,
        challenges: &'b mut HashMap<usize, C::Scalar>,
        instances: &'b [&'a [C::Scalar]],
        usable_rows: RangeTo<usize>,
        advice_single: AdviceSingle<C, LagrangeCoeff>,
        instance_single: &'b InstanceSingle<C>,
        rng: &'b mut R,
        transcript: &'b mut &'a mut T,
        column_indices: [Vec<usize>; 3],
        challenge_indices: [Vec<usize>; 3],
        unusable_rows_start: usize,
        _marker: PhantomData<(P, E)>,
    }

    impl<'params, 'a, 'b, F, Scheme, P, C, E, R, T> Assignment<F>
        for WitnessCollection<'params, 'a, 'b, Scheme, P, C, E, R, T>
    where
        F: Field,
        Scheme: CommitmentScheme<Curve = C>,
        P: Prover<'params, Scheme>,
        C: CurveAffine<ScalarExt = F>,
        E: EncodedChallenge<C>,
        R: RngCore,
        T: TranscriptWrite<C, E>,
        <Scheme as CommitmentScheme>::ParamsProver: Sync,
    {
        fn enter_region<NR, N>(&mut self, _: N)
        where
            NR: Into<String>,
            N: FnOnce() -> NR,
        {
            // Do nothing; we don't care about regions in this context.
        }

        fn exit_region(&mut self) {
            // Do nothing; we don't care about regions in this context.
        }

        fn enable_selector<A, AR>(&mut self, _: A, _: &Selector, _: usize) -> Result<(), Error>
        where
            A: FnOnce() -> AR,
            AR: Into<String>,
        {
            // We only care about advice columns here

            Ok(())
        }

        fn annotate_column<A, AR>(&mut self, _annotation: A, _column: Column<Any>)
        where
            A: FnOnce() -> AR,
            AR: Into<String>,
        {
            // Do nothing
        }

        fn query_instance(&self, column: Column<Instance>, row: usize) -> Result<Value<F>, Error> {
            if !self.usable_rows.contains(&row) {
                return Err(Error::not_enough_rows_available(self.params.k()));
            }

            self.instances
                .get(column.index())
                .and_then(|column| column.get(row))
                .map(|v| Value::known(*v))
                .ok_or(Error::BoundsFailure)
        }

        fn assign_advice<'v>(
            //<V, VR, A, AR>(
            &mut self,
            //_: A,
            column: Column<Advice>,
            row: usize,
            to: Value<Assigned<F>>,
        ) -> Value<&'v Assigned<F>> {
            // debug_assert_eq!(self.current_phase, column.column_type().phase);

            debug_assert!(
                self.usable_rows.contains(&row),
                "{:?}",
                Error::not_enough_rows_available(self.params.k())
            );

            let advice_get_mut = self
                .advice
                .get_mut(column.index())
                .expect("Not enough advice columns")
                .get_mut(row)
                .expect("Not enough rows");
            // We can get another 3-4% decrease in witness gen time by using the following unsafe code, but this skips all array bound checks so we should use it only if the performance gain is really necessary:
            /*
            let advice_get_mut = unsafe {
                self.advice
                    .get_unchecked_mut(column.index())
                    .get_unchecked_mut(row)
            };
            */
            *advice_get_mut = to
                .assign()
                .expect("No Value::unknown() in advice column allowed during create_proof");
            let immutable_raw_ptr = advice_get_mut as *const Assigned<F>;
            Value::known(unsafe { &*immutable_raw_ptr })
        }

        fn assign_fixed(&mut self, _: Column<Fixed>, _: usize, _: Assigned<F>) {
            // We only care about advice columns here
        }

        fn copy(&mut self, _: Column<Any>, _: usize, _: Column<Any>, _: usize) {
            // We only care about advice columns here
        }

        fn fill_from_row(
            &mut self,
            _: Column<Fixed>,
            _: usize,
            _: Value<Assigned<F>>,
        ) -> Result<(), Error> {
            Ok(())
        }

        fn get_challenge(&self, challenge: Challenge) -> Value<F> {
            self.challenges
                .get(&challenge.index())
                .cloned()
                .map(Value::known)
                .unwrap_or_else(Value::unknown)
        }

        fn push_namespace<NR, N>(&mut self, _: N)
        where
            NR: Into<String>,
            N: FnOnce() -> NR,
        {
            // Do nothing; we don't care about namespaces in this context.
        }

        fn pop_namespace(&mut self, _: Option<String>) {
            // Do nothing; we don't care about namespaces in this context.
        }

        fn next_phase(&mut self) {
            let phase = self.current_phase.to_u8() as usize;
            #[cfg(feature = "profile")]
            let start1 = start_timer!(|| format!("Phase {phase} inversion and MSM commitment"));
            if phase == 0 {
                // Absorb instances into transcript.
                // Do this here and not earlier in case we want to be able to mutate
                // the instances during synthesize in FirstPhase in the future
                if !P::QUERY_INSTANCE {
                    for values in self.instances.iter() {
                        for value in values.iter() {
                            self.transcript
                                .common_scalar(*value)
                                .expect("Absorbing instance value to transcript failed");
                        }
                    }
                } else {
                    let instance_commitments_projective: Vec<_> =
                        (&self.instance_single.instance_values)
                            .into_par_iter()
                            .map(|poly| self.params.commit_lagrange(poly, Blind::default()))
                            .collect();
                    let mut instance_commitments =
                        vec![C::identity(); instance_commitments_projective.len()];
                    C::CurveExt::batch_normalize(
                        &instance_commitments_projective,
                        &mut instance_commitments,
                    );
                    let instance_commitments = instance_commitments;
                    drop(instance_commitments_projective);

                    for commitment in &instance_commitments {
                        self.transcript
                            .common_point(*commitment)
                            .expect("Absorbing instance commitment to transcript failed");
                    }
                }
            }
            // Commit the advice columns in the current phase
            let mut advice_values = batch_invert_assigned(
                self.column_indices
                    .get(phase)
                    .expect("The API only supports 3 phases right now")
                    .iter()
                    .map(|column_index| &self.advice[*column_index][..])
                    .collect(),
            );
            // Add blinding factors to advice columns
            for advice_values in &mut advice_values {
                for cell in &mut advice_values[self.unusable_rows_start..] {
                    *cell = F::random(&mut self.rng);
                }
            }
            // Compute commitments to advice column polynomials
            let blinds: Vec<_> = advice_values
                .iter()
                .map(|_| Blind(F::random(&mut self.rng)))
                .collect();
            let advice_commitments_projective: Vec<_> = (&advice_values)
                .into_par_iter()
                .zip((&blinds).into_par_iter())
                .map(|(poly, blind)| self.params.commit_lagrange(poly, *blind))
                .collect();
            let mut advice_commitments = vec![C::identity(); advice_commitments_projective.len()];
            C::CurveExt::batch_normalize(&advice_commitments_projective, &mut advice_commitments);
            let advice_commitments = advice_commitments;
            drop(advice_commitments_projective);

            for commitment in &advice_commitments {
                self.transcript
                    .write_point(*commitment)
                    .expect("Absorbing advice commitment to transcript failed");
            }
            for ((column_index, advice_poly), blind) in self.column_indices[phase]
                .iter()
                .zip(advice_values)
                .zip(blinds)
            {
                self.advice_single.advice_polys[*column_index] = advice_poly;
                self.advice_single.advice_blinds[*column_index] = blind;
            }
            for challenge_index in self.challenge_indices[phase].iter() {
                let existing = self.challenges.insert(
                    *challenge_index,
                    *self.transcript.squeeze_challenge_scalar::<()>(),
                );
                assert!(existing.is_none());
            }
            self.current_phase = self.current_phase.next();
            #[cfg(feature = "profile")]
            end_timer!(start1);
        }
    }

    let mut column_indices = [(); 3].map(|_| vec![]);
    for (index, phase) in meta.advice_column_phase.iter().enumerate() {
        column_indices[phase.to_u8() as usize].push(index);
    }
    let mut challenge_indices = [(); 3].map(|_| vec![]);
    for (index, phase) in meta.challenge_phase.iter().enumerate() {
        challenge_indices[phase.to_u8() as usize].push(index);
    }

    #[cfg(feature = "profile")]
    let phase1_time = start_timer!(|| "Phase 1: Witness assignment and MSM commitments");
    let (advice, challenges) = {
        let mut advice = Vec::with_capacity(instances.len());
        let mut challenges = HashMap::<usize, Scheme::Scalar>::with_capacity(meta.num_challenges);

        let unusable_rows_start = params.n() as usize - (meta.blinding_factors() + 1);
        let phases = pk.vk.cs.phases().collect::<Vec<_>>();
        let num_phases = phases.len();
        // WARNING: this will currently not work if `circuits` has more than 1 circuit
        // because the original API squeezes the challenges for a phase after running all circuits
        // once in that phase.
        if num_phases > 1 {
            assert_eq!(
                circuits.len(),
                1,
                "New challenge API doesn't work with multiple circuits yet"
            );
        }
        for ((circuit, instances), instance_single) in
            circuits.iter().zip(instances).zip(instance.iter())
        {
            let mut witness: WitnessCollection<Scheme, P, _, E, _, _> = WitnessCollection {
                params,
                current_phase: phases[0],
                advice: vec![domain.empty_lagrange_assigned(); meta.num_advice_columns],
                instances,
                challenges: &mut challenges,
                // The prover will not be allowed to assign values to advice
                // cells that exist within inactive rows, which include some
                // number of blinding factors and an extra row for use in the
                // permutation argument.
                usable_rows: ..unusable_rows_start,
                advice_single: AdviceSingle::<Scheme::Curve, LagrangeCoeff> {
                    advice_polys: vec![domain.empty_lagrange(); meta.num_advice_columns],
                    advice_blinds: vec![Blind::default(); meta.num_advice_columns],
                },
                instance_single,
                rng: &mut rng,
                transcript: &mut transcript,
                column_indices: column_indices.clone(),
                challenge_indices: challenge_indices.clone(),
                unusable_rows_start,
                _marker: PhantomData,
            };

            // while loop is for compatibility with circuits that do not use the new `next_phase` API to manage phases
            // If the circuit uses the new API, then the while loop will only execute once
            while witness.current_phase.to_u8() < num_phases as u8 {
                #[cfg(feature = "profile")]
                let syn_time = start_timer!(|| format!(
                    "Synthesize time starting from phase {} (synthesize may cross multiple phases)",
                    witness.current_phase.to_u8()
                ));
                // Synthesize the circuit to obtain the witness and other information.
                ConcreteCircuit::FloorPlanner::synthesize(
                    &mut witness,
                    circuit,
                    config.clone(),
                    meta.constants.clone(),
                )
                .unwrap();
                #[cfg(feature = "profile")]
                end_timer!(syn_time);
                if witness.current_phase.to_u8() < num_phases as u8 {
                    witness.next_phase();
                }
            }
            advice.push(witness.advice_single);
        }

        assert_eq!(challenges.len(), meta.num_challenges);
        let challenges = (0..meta.num_challenges)
            .map(|index| challenges.remove(&index).unwrap())
            .collect::<Vec<_>>();

        (advice, challenges)
    };
    #[cfg(feature = "profile")]
    end_timer!(phase1_time);

    #[cfg(feature = "profile")]
    let phase2_time = start_timer!(|| "Phase 2: Lookup commit permuted");
    // Sample theta challenge for keeping lookup columns linearly independent
    let theta: ChallengeTheta<_> = transcript.squeeze_challenge_scalar();

    let lookups: Vec<Vec<lookup::prover::Permuted<Scheme::Curve>>> = instance
        .iter()
        .zip(advice.iter())
        .map(|(instance, advice)| -> Vec<_> {
            // Construct and commit to permuted values for each lookup
            pk.vk
                .cs
                .lookups
                .iter()
                .map(|lookup| {
                    lookup
                        .commit_permuted(
                            pk,
                            params,
                            domain,
                            theta,
                            &advice.advice_polys,
                            &pk.fixed_values,
                            &instance.instance_values,
                            &challenges,
                            &mut rng,
                            transcript,
                        )
                        .unwrap()
                })
                .collect()
        })
        .collect();
    #[cfg(feature = "profile")]
    end_timer!(phase2_time);

    #[cfg(feature = "profile")]
    let phase3a_time = start_timer!(|| "Phase 3a: Commit to permutations");

    // Sample beta challenge
    let beta: ChallengeBeta<_> = transcript.squeeze_challenge_scalar();

    // Sample gamma challenge
    let gamma: ChallengeGamma<_> = transcript.squeeze_challenge_scalar();

    // Commit to permutations.
    let permutations: Vec<permutation::prover::Committed<Scheme::Curve>> = instance
        .iter()
        .zip(advice.iter())
        .map(|(instance, advice)| {
            pk.vk
                .cs
                .permutation
                .commit(
                    params,
                    pk,
                    &pk.permutation,
                    &advice.advice_polys,
                    &pk.fixed_values,
                    &instance.instance_values,
                    beta,
                    gamma,
                    &mut rng,
                    transcript,
                )
                .unwrap()
        })
        .collect::<Vec<_>>();
    #[cfg(feature = "profile")]
    end_timer!(phase3a_time);

    #[cfg(feature = "profile")]
    let phase3b_time = start_timer!(|| "Phase 3b: Lookup commit product");
    let lookups: Vec<Vec<lookup::prover::Committed<Scheme::Curve>>> = lookups
        .into_iter()
        .map(|lookups| -> Vec<_> {
            // Construct and commit to products for each lookup
            lookups
                .into_iter()
                .map(|lookup| {
                    lookup
                        .commit_product(pk, params, beta, gamma, &mut rng, transcript)
                        .unwrap()
                })
                .collect()
        })
        .collect();
    #[cfg(feature = "profile")]
    end_timer!(phase3b_time);

    #[cfg(feature = "profile")]
    let vanishing_time = start_timer!(|| "Commit to vanishing argument's random poly");
    // Commit to the vanishing argument's random polynomial for blinding h(x_3)
    let vanishing = vanishing::Argument::commit(params, domain, &mut rng, transcript).unwrap();

    // Obtain challenge for keeping all separate gates linearly independent
    let y: ChallengeY<_> = transcript.squeeze_challenge_scalar();

    #[cfg(feature = "profile")]
    end_timer!(vanishing_time);
    #[cfg(feature = "profile")]
    let fft_time = start_timer!(|| "Calculate advice polys (fft)");

    // Calculate the advice polys
    let advice: Vec<AdviceSingle<Scheme::Curve, Coeff>> = advice
        .into_iter()
        .map(
            |AdviceSingle {
                 advice_polys,
                 advice_blinds,
             }| {
                AdviceSingle {
                    advice_polys: advice_polys
                        .into_iter()
                        .map(|poly| domain.lagrange_to_coeff(poly))
                        .collect::<Vec<_>>(),
                    advice_blinds,
                }
            },
        )
        .collect();
    #[cfg(feature = "profile")]
    end_timer!(fft_time);

    #[cfg(feature = "profile")]
    let phase4_time = start_timer!(|| "Phase 4: Evaluate h(X)");
    // Evaluate the h(X) polynomial
    let h_poly = pk.ev.evaluate_h(
        pk,
        &advice
            .iter()
            .map(|a| a.advice_polys.as_slice())
            .collect::<Vec<_>>(),
        &instance
            .iter()
            .map(|i| i.instance_polys.as_slice())
            .collect::<Vec<_>>(),
        &challenges,
        *y,
        *beta,
        *gamma,
        *theta,
        &lookups,
        &permutations,
    );
    #[cfg(feature = "profile")]
    end_timer!(phase4_time);

    #[cfg(feature = "profile")]
    let timer = start_timer!(|| "Commit to vanishing argument's h(X) commitments");
    // Construct the vanishing argument's h(X) commitments
    let vanishing = vanishing.construct(params, domain, h_poly, &mut rng, transcript)?;
    #[cfg(feature = "profile")]
    end_timer!(timer);
    #[cfg(feature = "profile")]
    let eval_time = start_timer!(|| "Commit to vanishing argument's h(X) commitments");

    let x: ChallengeX<_> = transcript.squeeze_challenge_scalar();
    let xn = x.pow([params.n()]);

    if P::QUERY_INSTANCE {
        // Compute and hash instance evals for each circuit instance
        for instance in instance.iter() {
            // Evaluate polynomials at omega^i x
            let instance_evals: Vec<_> = meta
                .instance_queries
                .iter()
                .map(|&(column, at)| {
                    eval_polynomial(
                        &instance.instance_polys[column.index()],
                        domain.rotate_omega(*x, at),
                    )
                })
                .collect();

            // Hash each instance column evaluation
            for eval in instance_evals.iter() {
                transcript.write_scalar(*eval)?;
            }
        }
    }

    // Compute and hash advice evals for each circuit instance
    for advice in advice.iter() {
        // Evaluate polynomials at omega^i x
        let advice_evals: Vec<_> = meta
            .advice_queries
            .iter()
            .map(|&(column, at)| {
                eval_polynomial(
                    &advice.advice_polys[column.index()],
                    domain.rotate_omega(*x, at),
                )
            })
            .collect();

        // Hash each advice column evaluation
        for eval in advice_evals.iter() {
            transcript.write_scalar(*eval)?;
        }
    }

    // Compute and hash fixed evals (shared across all circuit instances)
    let fixed_evals: Vec<_> = meta
        .fixed_queries
        .iter()
        .map(|&(column, at)| {
            eval_polynomial(&pk.fixed_polys[column.index()], domain.rotate_omega(*x, at))
        })
        .collect();

    // Hash each fixed column evaluation
    for eval in fixed_evals.iter() {
        transcript.write_scalar(*eval)?;
    }

    let vanishing = vanishing.evaluate(x, xn, domain, transcript)?;

    // Evaluate common permutation data
    pk.permutation.evaluate(x, transcript)?;

    // Evaluate the permutations, if any, at omega^i x.
    let permutations: Vec<permutation::prover::Evaluated<Scheme::Curve>> = permutations
        .into_iter()
        .map(|permutation| permutation.construct().evaluate(pk, x, transcript).unwrap())
        .collect();

    // Evaluate the lookups, if any, at omega^i x.
    let lookups: Vec<Vec<lookup::prover::Evaluated<Scheme::Curve>>> = lookups
        .into_iter()
        .map(|lookups| -> Vec<_> {
            lookups
                .into_iter()
                .map(|p| p.evaluate(pk, x, transcript).unwrap())
                .collect()
        })
        .collect();
    #[cfg(feature = "profile")]
    end_timer!(eval_time);

    let instances = instance
        .iter()
        .zip(advice.iter())
        .zip(permutations.iter())
        .zip(lookups.iter())
        .flat_map(|(((instance, advice), permutation), lookups)| {
            iter::empty()
                .chain(
                    P::QUERY_INSTANCE
                        .then_some(pk.vk.cs.instance_queries.iter().map(move |&(column, at)| {
                            ProverQuery {
                                point: domain.rotate_omega(*x, at),
                                poly: &instance.instance_polys[column.index()],
                                blind: Blind::default(),
                            }
                        }))
                        .into_iter()
                        .flatten(),
                )
                .chain(
                    pk.vk
                        .cs
                        .advice_queries
                        .iter()
                        .map(move |&(column, at)| ProverQuery {
                            point: domain.rotate_omega(*x, at),
                            poly: &advice.advice_polys[column.index()],
                            blind: advice.advice_blinds[column.index()],
                        }),
                )
                .chain(permutation.open(pk, x))
                .chain(lookups.iter().flat_map(move |p| p.open(pk, x)))
        })
        .chain(
            pk.vk
                .cs
                .fixed_queries
                .iter()
                .map(|&(column, at)| ProverQuery {
                    point: domain.rotate_omega(*x, at),
                    poly: &pk.fixed_polys[column.index()],
                    blind: Blind::default(),
                }),
        )
        .chain(pk.permutation.open(x))
        // We query the h(X) polynomial at x
        .chain(vanishing.open(x));

    #[cfg(feature = "profile")]
    let multiopen_time = start_timer!(|| "Phase 5: multiopen");
    let prover = P::new(params);
    #[allow(clippy::let_and_return)]
    let multiopen_res = prover
        .create_proof(&mut rng, transcript, instances)
        .map_err(|_| Error::ConstraintSystemFailure);
    #[cfg(feature = "profile")]
    end_timer!(multiopen_time);
    multiopen_res
}

#[test]
fn test_create_proof() {
    use crate::{
        circuit::SimpleFloorPlanner,
        plonk::{keygen_pk, keygen_vk},
        poly::kzg::{
            commitment::{KZGCommitmentScheme, ParamsKZG},
            multiopen::ProverSHPLONK,
        },
        transcript::{Blake2bWrite, Challenge255, TranscriptWriterBuffer},
    };
    use halo2curves::bn256::Bn256;
    use rand_core::OsRng;

    #[derive(Clone, Copy)]
    struct MyCircuit;

    impl<F: Field> Circuit<F> for MyCircuit {
        type Config = ();
        type FloorPlanner = SimpleFloorPlanner;
        #[cfg(feature = "circuit-params")]
        type Params = ();

        fn without_witnesses(&self) -> Self {
            *self
        }

        fn configure(_meta: &mut ConstraintSystem<F>) -> Self::Config {}

        fn synthesize(
            &self,
            _config: Self::Config,
            _layouter: impl crate::circuit::Layouter<F>,
        ) -> Result<(), Error> {
            Ok(())
        }
    }

    let params: ParamsKZG<Bn256> = ParamsKZG::setup(3, OsRng);
    let vk = keygen_vk(&params, &MyCircuit).expect("keygen_vk should not fail");
    let pk = keygen_pk(&params, vk, &MyCircuit).expect("keygen_pk should not fail");
    let mut transcript = Blake2bWrite::<_, _, Challenge255<_>>::init(vec![]);

    // Create proof with wrong number of instances
    let proof = create_proof::<KZGCommitmentScheme<_>, ProverSHPLONK<_>, _, _, _, _>(
        &params,
        &pk,
        &[MyCircuit, MyCircuit],
        &[],
        OsRng,
        &mut transcript,
    );
    assert!(matches!(proof.unwrap_err(), Error::InvalidInstances));

    // Create proof with correct number of instances
    create_proof::<KZGCommitmentScheme<_>, ProverSHPLONK<_>, _, _, _, _>(
        &params,
        &pk,
        &[MyCircuit, MyCircuit],
        &[&[], &[]],
        OsRng,
        &mut transcript,
    )
    .expect("proof generation should not fail");
}