elf/
elf_bytes.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
use crate::abi;
use crate::compression::CompressionHeader;
use crate::dynamic::{Dyn, DynamicTable};
use crate::endian::EndianParse;
use crate::file::{parse_ident, Class, FileHeader};
use crate::gnu_symver::{
    SymbolVersionTable, VerDefIterator, VerNeedIterator, VersionIndex, VersionIndexTable,
};
use crate::hash::{GnuHashTable, SysVHashTable};
use crate::note::NoteIterator;
use crate::parse::{ParseAt, ParseError, ReadBytesExt};
use crate::relocation::{RelIterator, RelaIterator};
use crate::section::{SectionHeader, SectionHeaderTable};
use crate::segment::{ProgramHeader, SegmentTable};
use crate::string_table::StringTable;
use crate::symbol::{Symbol, SymbolTable};

//  _____ _     _____ ____        _
// | ____| |   |  ___| __ ) _   _| |_ ___  ___
// |  _| | |   | |_  |  _ \| | | | __/ _ \/ __|
// | |___| |___|  _| | |_) | |_| | ||  __/\__ \
// |_____|_____|_|   |____/ \__, |\__\___||___/
//                          |___/
//

/// This type encapsulates the bytes-oriented interface for parsing ELF objects from `&[u8]`.
///
/// This parser is no_std and zero-alloc, returning lazy-parsing interfaces wrapped around
/// subslices of the provided ELF bytes `&[u8]`. The various ELF structures are
/// parsed on-demand into a native Rust representation.
///
/// Example usage:
/// ```
/// use elf::abi::PT_LOAD;
/// use elf::endian::AnyEndian;
/// use elf::ElfBytes;
/// use elf::segment::ProgramHeader;
///
/// let path = std::path::PathBuf::from("sample-objects/symver.x86_64.so");
/// let file_data = std::fs::read(path).unwrap();
///
/// let slice = file_data.as_slice();
/// let file = ElfBytes::<AnyEndian>::minimal_parse(slice).unwrap();
///
/// // Get all the common ELF sections (if any). We have a lot of ELF work to do!
/// let common_sections = file.find_common_data().unwrap();
/// // ... do some stuff with the symtab, dynsyms etc
///
/// // It can also yield iterators on which we can do normal iterator things, like filtering
/// // for all the segments of a specific type. Parsing is done on each iter.next() call, so
/// // if you end iteration early, it won't parse the rest of the table.
/// let first_load_phdr: Option<ProgramHeader> = file.segments().unwrap()
///     .iter()
///     .find(|phdr|{phdr.p_type == PT_LOAD});
/// println!("First load segment is at: {}", first_load_phdr.unwrap().p_vaddr);
///
/// // Or if you do things like this to get a vec of only the PT_LOAD segments.
/// let all_load_phdrs: Vec<ProgramHeader> = file.segments().unwrap()
///     .iter()
///     .filter(|phdr|{phdr.p_type == PT_LOAD})
///     .collect();
/// println!("There are {} PT_LOAD segments", all_load_phdrs.len());
/// ```
#[derive(Debug)]
pub struct ElfBytes<'data, E: EndianParse> {
    pub ehdr: FileHeader<E>,
    data: &'data [u8],
    shdrs: Option<SectionHeaderTable<'data, E>>,
    phdrs: Option<SegmentTable<'data, E>>,
}

/// Find the location (if any) of the section headers in the given data buffer and take a
/// subslice of their data and wrap it in a lazy-parsing SectionHeaderTable.
/// If shnum > SHN_LORESERVE (0xff00), then this will additionally parse out shdr[0] to calculate
/// the full table size, but all other parsing of SectionHeaders is deferred.
fn find_shdrs<'data, E: EndianParse>(
    ehdr: &FileHeader<E>,
    data: &'data [u8],
) -> Result<Option<SectionHeaderTable<'data, E>>, ParseError> {
    // It's Ok to have no section headers
    if ehdr.e_shoff == 0 {
        return Ok(None);
    }

    // If the number of sections is greater than or equal to SHN_LORESERVE (0xff00),
    // e_shnum is zero and the actual number of section header table entries
    // is contained in the sh_size field of the section header at index 0.
    let shoff: usize = ehdr.e_shoff.try_into()?;
    let mut shnum = ehdr.e_shnum as usize;
    if shnum == 0 {
        let mut offset = shoff;
        let shdr0 = SectionHeader::parse_at(ehdr.endianness, ehdr.class, &mut offset, data)?;
        shnum = shdr0.sh_size.try_into()?;
    }

    // Validate shentsize before trying to read the table so that we can error early for corrupted files
    let entsize = SectionHeader::validate_entsize(ehdr.class, ehdr.e_shentsize as usize)?;

    let size = entsize
        .checked_mul(shnum)
        .ok_or(ParseError::IntegerOverflow)?;
    let end = shoff.checked_add(size).ok_or(ParseError::IntegerOverflow)?;
    let buf = data.get_bytes(shoff..end)?;
    Ok(Some(SectionHeaderTable::new(
        ehdr.endianness,
        ehdr.class,
        buf,
    )))
}

/// Find the location (if any) of the program headers in the given data buffer and take a
/// subslice of their data and wrap it in a lazy-parsing SegmentTable.
fn find_phdrs<'data, E: EndianParse>(
    ehdr: &FileHeader<E>,
    data: &'data [u8],
) -> Result<Option<SegmentTable<'data, E>>, ParseError> {
    // It's Ok to have no program headers
    if ehdr.e_phoff == 0 {
        return Ok(None);
    }

    // If the number of segments is greater than or equal to PN_XNUM (0xffff),
    // e_phnum is set to PN_XNUM, and the actual number of program header table
    // entries is contained in the sh_info field of the section header at index 0.
    let mut phnum = ehdr.e_phnum as usize;
    if phnum == abi::PN_XNUM as usize {
        let shoff: usize = ehdr.e_shoff.try_into()?;
        let mut offset = shoff;
        let shdr0 = SectionHeader::parse_at(ehdr.endianness, ehdr.class, &mut offset, data)?;
        phnum = shdr0.sh_info.try_into()?;
    }

    // Validate phentsize before trying to read the table so that we can error early for corrupted files
    let entsize = ProgramHeader::validate_entsize(ehdr.class, ehdr.e_phentsize as usize)?;

    let phoff: usize = ehdr.e_phoff.try_into()?;
    let size = entsize
        .checked_mul(phnum)
        .ok_or(ParseError::IntegerOverflow)?;
    let end = phoff.checked_add(size).ok_or(ParseError::IntegerOverflow)?;
    let buf = data.get_bytes(phoff..end)?;
    Ok(Some(SegmentTable::new(ehdr.endianness, ehdr.class, buf)))
}

/// This struct collects the common sections found in ELF objects
#[derive(Debug, Default)]
pub struct CommonElfData<'data, E: EndianParse> {
    /// .symtab section
    pub symtab: Option<SymbolTable<'data, E>>,
    /// strtab for .symtab
    pub symtab_strs: Option<StringTable<'data>>,

    /// .dynsym section
    pub dynsyms: Option<SymbolTable<'data, E>>,
    /// strtab for .dynsym
    pub dynsyms_strs: Option<StringTable<'data>>,

    /// .dynamic section or PT_DYNAMIC segment (both point to the same table)
    pub dynamic: Option<DynamicTable<'data, E>>,

    /// .hash section
    pub sysv_hash: Option<SysVHashTable<'data, E>>,

    /// .gnu.hash section
    pub gnu_hash: Option<GnuHashTable<'data, E>>,
}

impl<'data, E: EndianParse> ElfBytes<'data, E> {
    /// Do the minimal parsing work to get an [ElfBytes] handle from a byte slice containing an ELF object.
    ///
    /// This parses the ELF [FileHeader], and locates (but does not parse) the
    /// Section Header Table and Segment Table.
    ///
    // N.B. I thought about calling this "sparse_parse", but it felt too silly for a serious lib like this
    pub fn minimal_parse(data: &'data [u8]) -> Result<Self, ParseError> {
        let ident_buf = data.get_bytes(0..abi::EI_NIDENT)?;
        let ident = parse_ident(ident_buf)?;

        let tail_start = abi::EI_NIDENT;
        let tail_end = match ident.1 {
            Class::ELF32 => tail_start + crate::file::ELF32_EHDR_TAILSIZE,
            Class::ELF64 => tail_start + crate::file::ELF64_EHDR_TAILSIZE,
        };
        let tail_buf = data.get_bytes(tail_start..tail_end)?;

        let ehdr = FileHeader::parse_tail(ident, tail_buf)?;

        let shdrs = find_shdrs(&ehdr, data)?;
        let phdrs = find_phdrs(&ehdr, data)?;
        Ok(ElfBytes {
            ehdr,
            data,
            shdrs,
            phdrs,
        })
    }

    /// Get this Elf object's zero-alloc lazy-parsing [SegmentTable] (if any).
    ///
    /// This table parses [ProgramHeader]s on demand and does not make any internal heap allocations
    /// when parsing.
    pub fn segments(&self) -> Option<SegmentTable<'data, E>> {
        self.phdrs
    }

    /// Get this Elf object's zero-alloc lazy-parsing [SectionHeaderTable] (if any).
    ///
    /// This table parses [SectionHeader]s on demand and does not make any internal heap allocations
    /// when parsing.
    pub fn section_headers(&self) -> Option<SectionHeaderTable<'data, E>> {
        self.shdrs
    }

    /// Get this ELF object's [SectionHeaderTable] alongside its corresponding [StringTable].
    ///
    /// This is useful if you want to know the string name of sections.
    ///
    /// Example usage:
    /// ```
    /// use std::collections::HashMap;
    /// use elf::endian::AnyEndian;
    /// use elf::ElfBytes;
    /// use elf::note::Note;
    /// use elf::note::NoteGnuBuildId;
    /// use elf::section::SectionHeader;
    ///
    /// let path = std::path::PathBuf::from("sample-objects/symver.x86_64.so");
    /// let file_data = std::fs::read(path).unwrap();
    ///
    /// let slice = file_data.as_slice();
    /// let file = ElfBytes::<AnyEndian>::minimal_parse(slice).unwrap();
    ///
    /// // Get the section header table alongside its string table
    /// let (shdrs_opt, strtab_opt) = file
    ///     .section_headers_with_strtab()
    ///     .expect("shdrs offsets should be valid");
    /// let (shdrs, strtab) = (
    ///     shdrs_opt.expect("Should have shdrs"),
    ///     strtab_opt.expect("Should have strtab")
    /// );
    ///
    /// // Parse the shdrs and collect them into a map keyed on their zero-copied name
    /// let with_names: HashMap<&str, SectionHeader> = shdrs
    ///     .iter()
    ///     .map(|shdr| {
    ///         (
    ///             strtab.get(shdr.sh_name as usize).expect("Failed to get section name"),
    ///             shdr,
    ///         )
    ///     })
    ///     .collect();
    ///
    /// // Get the zero-copy parsed type for the the build id note
    /// let build_id_note_shdr: &SectionHeader = with_names
    ///     .get(".note.gnu.build-id")
    ///     .expect("Should have build id note section");
    /// let notes: Vec<_> = file
    ///     .section_data_as_notes(build_id_note_shdr)
    ///     .expect("Should be able to get note section data")
    ///     .collect();
    /// println!("{:?}", notes[0]);
    /// ```
    pub fn section_headers_with_strtab(
        &self,
    ) -> Result<
        (
            Option<SectionHeaderTable<'data, E>>,
            Option<StringTable<'data>>,
        ),
        ParseError,
    > {
        // It's Ok to have no section headers
        let shdrs = match self.section_headers() {
            Some(shdrs) => shdrs,
            None => {
                return Ok((None, None));
            }
        };

        // It's Ok to not have a string table
        if self.ehdr.e_shstrndx == abi::SHN_UNDEF {
            return Ok((Some(shdrs), None));
        }

        // If the section name string table section index is greater than or
        // equal to SHN_LORESERVE (0xff00), e_shstrndx has the value SHN_XINDEX
        // (0xffff) and the actual index of the section name string table section
        // is contained in the sh_link field of the section header at index 0.
        let mut shstrndx = self.ehdr.e_shstrndx as usize;
        if self.ehdr.e_shstrndx == abi::SHN_XINDEX {
            let shdr_0 = shdrs.get(0)?;
            shstrndx = shdr_0.sh_link as usize;
        }

        let strtab = shdrs.get(shstrndx)?;
        let (strtab_start, strtab_end) = strtab.get_data_range()?;
        let strtab_buf = self.data.get_bytes(strtab_start..strtab_end)?;
        Ok((Some(shdrs), Some(StringTable::new(strtab_buf))))
    }

    /// Parse section headers until one is found with the given name
    ///
    /// Example to get the ELF file's ABI-tag note
    /// ```
    /// use elf::ElfBytes;
    /// use elf::endian::AnyEndian;
    /// use elf::section::SectionHeader;
    /// use elf::note::Note;
    /// use elf::note::NoteGnuAbiTag;
    ///
    /// let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
    /// let file_data = std::fs::read(path).unwrap();
    /// let slice = file_data.as_slice();
    /// let file = ElfBytes::<AnyEndian>::minimal_parse(slice).unwrap();
    ///
    /// let shdr: SectionHeader = file
    ///     .section_header_by_name(".note.ABI-tag")
    ///     .expect("section table should be parseable")
    ///     .expect("file should have a .note.ABI-tag section");
    ///
    /// let notes: Vec<_> = file
    ///     .section_data_as_notes(&shdr)
    ///     .expect("Should be able to get note section data")
    ///     .collect();
    /// assert_eq!(
    ///     notes[0],
    ///     Note::GnuAbiTag(NoteGnuAbiTag {
    ///         os: 0,
    ///         major: 2,
    ///         minor: 6,
    ///         subminor: 32
    ///     }));
    /// ```
    pub fn section_header_by_name(&self, name: &str) -> Result<Option<SectionHeader>, ParseError> {
        let (shdrs, strtab) = match self.section_headers_with_strtab()? {
            (Some(shdrs), Some(strtab)) => (shdrs, strtab),
            _ => {
                // If we don't have shdrs, or don't have a strtab, we can't find a section by its name
                return Ok(None);
            }
        };

        Ok(shdrs.iter().find(|shdr| {
            let sh_name = match strtab.get(shdr.sh_name as usize) {
                Ok(name) => name,
                _ => {
                    return false;
                }
            };
            name == sh_name
        }))
    }

    /// Efficiently locate the set of common sections found in ELF files by doing a single iteration
    /// over the SectionHeaders table.
    ///
    /// This is useful for those who know they're going to be accessing multiple common sections, like
    /// symbol tables, string tables. Many of these can also be accessed by the more targeted
    /// helpers like [ElfBytes::symbol_table] or [ElfBytes::dynamic], though those each do their own
    /// internal searches through the shdrs to find the section.
    pub fn find_common_data(&self) -> Result<CommonElfData<'data, E>, ParseError> {
        let mut result: CommonElfData<'data, E> = CommonElfData::default();

        // Iterate once over the shdrs to collect up any known sections
        if let Some(shdrs) = self.shdrs {
            for shdr in shdrs.iter() {
                match shdr.sh_type {
                    abi::SHT_SYMTAB => {
                        let strtab_shdr = shdrs.get(shdr.sh_link as usize)?;
                        let (symtab, strtab) =
                            self.section_data_as_symbol_table(&shdr, &strtab_shdr)?;

                        result.symtab = Some(symtab);
                        result.symtab_strs = Some(strtab);
                    }
                    abi::SHT_DYNSYM => {
                        let strtab_shdr = shdrs.get(shdr.sh_link as usize)?;
                        let (symtab, strtab) =
                            self.section_data_as_symbol_table(&shdr, &strtab_shdr)?;

                        result.dynsyms = Some(symtab);
                        result.dynsyms_strs = Some(strtab);
                    }
                    abi::SHT_DYNAMIC => {
                        result.dynamic = Some(self.section_data_as_dynamic(&shdr)?);
                    }
                    abi::SHT_HASH => {
                        let (start, end) = shdr.get_data_range()?;
                        let buf = self.data.get_bytes(start..end)?;
                        result.sysv_hash = Some(SysVHashTable::new(
                            self.ehdr.endianness,
                            self.ehdr.class,
                            buf,
                        )?);
                    }
                    abi::SHT_GNU_HASH => {
                        let (start, end) = shdr.get_data_range()?;
                        let buf = self.data.get_bytes(start..end)?;
                        result.gnu_hash = Some(GnuHashTable::new(
                            self.ehdr.endianness,
                            self.ehdr.class,
                            buf,
                        )?);
                    }
                    _ => {
                        continue;
                    }
                }
            }
        }

        // If we didn't find SHT_DYNAMIC from the section headers, try the program headers
        if result.dynamic.is_none() {
            if let Some(phdrs) = self.phdrs {
                if let Some(dyn_phdr) = phdrs.iter().find(|phdr| phdr.p_type == abi::PT_DYNAMIC) {
                    let (start, end) = dyn_phdr.get_file_data_range()?;
                    let buf = self.data.get_bytes(start..end)?;
                    result.dynamic = Some(DynamicTable::new(
                        self.ehdr.endianness,
                        self.ehdr.class,
                        buf,
                    ));
                }
            }
        }

        Ok(result)
    }

    /// Get the section data for a given [SectionHeader], alongside an optional compression context.
    ///
    /// This library does not do any decompression for the user, but merely returns the raw compressed
    /// section data if the section is compressed alongside its ELF compression structure describing the
    /// compression algorithm used.
    ///
    /// Users who wish to work with compressed sections must pick their compression library of choice
    /// and do the decompression themselves. The only two options supported by the ELF spec for section
    /// compression are: [abi::ELFCOMPRESS_ZLIB] and [abi::ELFCOMPRESS_ZSTD].
    pub fn section_data(
        &self,
        shdr: &SectionHeader,
    ) -> Result<(&'data [u8], Option<CompressionHeader>), ParseError> {
        if shdr.sh_type == abi::SHT_NOBITS {
            return Ok((&[], None));
        }

        let (start, end) = shdr.get_data_range()?;
        let buf = self.data.get_bytes(start..end)?;

        if shdr.sh_flags & abi::SHF_COMPRESSED as u64 == 0 {
            Ok((buf, None))
        } else {
            let mut offset = 0;
            let chdr = CompressionHeader::parse_at(
                self.ehdr.endianness,
                self.ehdr.class,
                &mut offset,
                buf,
            )?;
            let compressed_buf = buf.get(offset..).ok_or(ParseError::SliceReadError((
                offset,
                shdr.sh_size.try_into()?,
            )))?;
            Ok((compressed_buf, Some(chdr)))
        }
    }

    /// Get the section data for a given [SectionHeader], and interpret it as a [StringTable]
    ///
    /// Returns a ParseError if the section is not of type [abi::SHT_STRTAB]
    pub fn section_data_as_strtab(
        &self,
        shdr: &SectionHeader,
    ) -> Result<StringTable<'data>, ParseError> {
        if shdr.sh_type != abi::SHT_STRTAB {
            return Err(ParseError::UnexpectedSectionType((
                shdr.sh_type,
                abi::SHT_STRTAB,
            )));
        }

        let (buf, _) = self.section_data(shdr)?;
        Ok(StringTable::new(buf))
    }

    /// Get the section data for a given [SectionHeader], and interpret it as an
    /// iterator over no-addend relocations [Rel](crate::relocation::Rel)
    ///
    /// Returns a ParseError if the section is not of type [abi::SHT_REL]
    pub fn section_data_as_rels(
        &self,
        shdr: &SectionHeader,
    ) -> Result<RelIterator<'data, E>, ParseError> {
        if shdr.sh_type != abi::SHT_REL {
            return Err(ParseError::UnexpectedSectionType((
                shdr.sh_type,
                abi::SHT_REL,
            )));
        }

        let (buf, _) = self.section_data(shdr)?;
        Ok(RelIterator::new(self.ehdr.endianness, self.ehdr.class, buf))
    }

    /// Get the section data for a given [SectionHeader], and interpret it as an
    /// iterator over relocations with addends [Rela](crate::relocation::Rela)
    ///
    /// Returns a ParseError if the section is not of type [abi::SHT_RELA]
    pub fn section_data_as_relas(
        &self,
        shdr: &SectionHeader,
    ) -> Result<RelaIterator<'data, E>, ParseError> {
        if shdr.sh_type != abi::SHT_RELA {
            return Err(ParseError::UnexpectedSectionType((
                shdr.sh_type,
                abi::SHT_RELA,
            )));
        }

        let (buf, _) = self.section_data(shdr)?;
        Ok(RelaIterator::new(
            self.ehdr.endianness,
            self.ehdr.class,
            buf,
        ))
    }

    /// Get the section data for a given [SectionHeader], and interpret it as an
    /// iterator over [Note](crate::note::Note)s
    ///
    /// Returns a ParseError if the section is not of type [abi::SHT_NOTE]
    pub fn section_data_as_notes(
        &self,
        shdr: &SectionHeader,
    ) -> Result<NoteIterator<'data, E>, ParseError> {
        if shdr.sh_type != abi::SHT_NOTE {
            return Err(ParseError::UnexpectedSectionType((
                shdr.sh_type,
                abi::SHT_NOTE,
            )));
        }

        let (buf, _) = self.section_data(shdr)?;
        Ok(NoteIterator::new(
            self.ehdr.endianness,
            self.ehdr.class,
            shdr.sh_addralign as usize,
            buf,
        ))
    }

    /// Internal helper to get the section data for an SHT_DYNAMIC section as a .dynamic section table.
    /// See [ElfBytes::dynamic] or [ElfBytes::find_common_data] for the public interface
    fn section_data_as_dynamic(
        &self,
        shdr: &SectionHeader,
    ) -> Result<DynamicTable<'data, E>, ParseError> {
        if shdr.sh_type != abi::SHT_DYNAMIC {
            return Err(ParseError::UnexpectedSectionType((
                shdr.sh_type,
                abi::SHT_DYNAMIC,
            )));
        }

        // Validate entsize before trying to read the table so that we can error early for corrupted files
        Dyn::validate_entsize(self.ehdr.class, shdr.sh_entsize.try_into()?)?;
        let (buf, _) = self.section_data(shdr)?;
        Ok(DynamicTable::new(
            self.ehdr.endianness,
            self.ehdr.class,
            buf,
        ))
    }

    /// Get the segment's file data for a given segment/[ProgramHeader].
    ///
    /// This is the segment's data as found in the file.
    pub fn segment_data(&self, phdr: &ProgramHeader) -> Result<&'data [u8], ParseError> {
        let (start, end) = phdr.get_file_data_range()?;
        self.data.get_bytes(start..end)
    }

    /// Get the segment's file data for a given [ProgramHeader], and interpret it as an
    /// iterator over [Note](crate::note::Note)s
    ///
    /// Returns a ParseError if the section is not of type [abi::PT_NOTE]
    pub fn segment_data_as_notes(
        &self,
        phdr: &ProgramHeader,
    ) -> Result<NoteIterator<'data, E>, ParseError> {
        if phdr.p_type != abi::PT_NOTE {
            return Err(ParseError::UnexpectedSegmentType((
                phdr.p_type,
                abi::PT_NOTE,
            )));
        }

        let buf = self.segment_data(phdr)?;
        Ok(NoteIterator::new(
            self.ehdr.endianness,
            self.ehdr.class,
            phdr.p_align as usize,
            buf,
        ))
    }

    /// Get the .dynamic section or [abi::PT_DYNAMIC] segment contents.
    pub fn dynamic(&self) -> Result<Option<DynamicTable<'data, E>>, ParseError> {
        // If we have section headers, look for the SHT_DYNAMIC section
        if let Some(shdrs) = self.section_headers() {
            if let Some(shdr) = shdrs.iter().find(|shdr| shdr.sh_type == abi::SHT_DYNAMIC) {
                return Ok(Some(self.section_data_as_dynamic(&shdr)?));
            }
        // Otherwise, look up the PT_DYNAMIC segment (if any)
        } else if let Some(phdrs) = self.segments() {
            if let Some(phdr) = phdrs.iter().find(|phdr| phdr.p_type == abi::PT_DYNAMIC) {
                let (start, end) = phdr.get_file_data_range()?;
                let buf = self.data.get_bytes(start..end)?;
                return Ok(Some(DynamicTable::new(
                    self.ehdr.endianness,
                    self.ehdr.class,
                    buf,
                )));
            }
        }

        Ok(None)
    }

    /// Helper method to get the section data for a given pair of [SectionHeader] for the symbol
    /// table and its linked strtab, and interpret them as [SymbolTable] and [StringTable].
    fn section_data_as_symbol_table(
        &self,
        shdr: &SectionHeader,
        strtab_shdr: &SectionHeader,
    ) -> Result<(SymbolTable<'data, E>, StringTable<'data>), ParseError> {
        // Validate entsize before trying to read the table so that we can error early for corrupted files
        Symbol::validate_entsize(self.ehdr.class, shdr.sh_entsize.try_into()?)?;

        // Load the section bytes for the symtab
        // (we want immutable references to both the symtab and its strtab concurrently)
        let (symtab_start, symtab_end) = shdr.get_data_range()?;
        let symtab_buf = self.data.get_bytes(symtab_start..symtab_end)?;

        // Load the section bytes for the strtab
        // (we want immutable references to both the symtab and its strtab concurrently)
        let (strtab_start, strtab_end) = strtab_shdr.get_data_range()?;
        let strtab_buf = self.data.get_bytes(strtab_start..strtab_end)?;

        let symtab = SymbolTable::new(self.ehdr.endianness, self.ehdr.class, symtab_buf);
        let strtab = StringTable::new(strtab_buf);
        Ok((symtab, strtab))
    }

    /// Get the ELF file's `.symtab` and associated strtab (if any)
    pub fn symbol_table(
        &self,
    ) -> Result<Option<(SymbolTable<'data, E>, StringTable<'data>)>, ParseError> {
        let shdrs = match self.section_headers() {
            Some(shdrs) => shdrs,
            None => {
                return Ok(None);
            }
        };

        // Get the symtab header for the symtab. The GABI states there can be zero or one per ELF file.
        let symtab_shdr = match shdrs.iter().find(|shdr| shdr.sh_type == abi::SHT_SYMTAB) {
            Some(shdr) => shdr,
            None => {
                return Ok(None);
            }
        };

        let strtab_shdr = shdrs.get(symtab_shdr.sh_link as usize)?;
        Ok(Some(self.section_data_as_symbol_table(
            &symtab_shdr,
            &strtab_shdr,
        )?))
    }

    /// Get the ELF file's `.dynsym` and associated strtab (if any)
    pub fn dynamic_symbol_table(
        &self,
    ) -> Result<Option<(SymbolTable<'data, E>, StringTable<'data>)>, ParseError> {
        let shdrs = match self.section_headers() {
            Some(shdrs) => shdrs,
            None => {
                return Ok(None);
            }
        };

        // Get the symtab header for the symtab. The GABI states there can be zero or one per ELF file.
        let symtab_shdr = match shdrs.iter().find(|shdr| shdr.sh_type == abi::SHT_DYNSYM) {
            Some(shdr) => shdr,
            None => {
                return Ok(None);
            }
        };

        let strtab_shdr = shdrs.get(symtab_shdr.sh_link as usize)?;
        Ok(Some(self.section_data_as_symbol_table(
            &symtab_shdr,
            &strtab_shdr,
        )?))
    }

    /// Locate the section data for the various GNU Symbol Versioning sections (if any)
    /// and return them in a [SymbolVersionTable] that which can interpret them in-place to
    /// yield [SymbolRequirement](crate::gnu_symver::SymbolRequirement)s
    /// and [SymbolDefinition](crate::gnu_symver::SymbolDefinition)s
    ///
    /// This is a GNU extension and not all objects use symbol versioning.
    /// Returns an empty Option if the object does not use symbol versioning.
    pub fn symbol_version_table(&self) -> Result<Option<SymbolVersionTable<'data, E>>, ParseError> {
        // No sections means no GNU symbol versioning sections, which is ok
        let shdrs = match self.section_headers() {
            Some(shdrs) => shdrs,
            None => {
                return Ok(None);
            }
        };

        let mut versym_opt: Option<SectionHeader> = None;
        let mut needs_opt: Option<SectionHeader> = None;
        let mut defs_opt: Option<SectionHeader> = None;
        // Find the GNU Symbol versioning sections (if any)
        for shdr in shdrs.iter() {
            if shdr.sh_type == abi::SHT_GNU_VERSYM {
                versym_opt = Some(shdr);
            } else if shdr.sh_type == abi::SHT_GNU_VERNEED {
                needs_opt = Some(shdr);
            } else if shdr.sh_type == abi::SHT_GNU_VERDEF {
                defs_opt = Some(shdr);
            }

            // If we've found all three sections, then we're done
            if versym_opt.is_some() && needs_opt.is_some() && defs_opt.is_some() {
                break;
            }
        }

        let versym_shdr = match versym_opt {
            Some(shdr) => shdr,
            // No VERSYM section means the object doesn't use symbol versioning, which is ok.
            None => {
                return Ok(None);
            }
        };

        // Load the versym table
        // Validate VERSYM entsize before trying to read the table so that we can error early for corrupted files
        VersionIndex::validate_entsize(self.ehdr.class, versym_shdr.sh_entsize.try_into()?)?;
        let (versym_start, versym_end) = versym_shdr.get_data_range()?;
        let version_ids = VersionIndexTable::new(
            self.ehdr.endianness,
            self.ehdr.class,
            self.data.get_bytes(versym_start..versym_end)?,
        );

        // Wrap the VERNEED section and strings data in an iterator and string table (if any)
        let verneeds = match needs_opt {
            Some(shdr) => {
                let (start, end) = shdr.get_data_range()?;
                let needs_buf = self.data.get_bytes(start..end)?;

                let strs_shdr = shdrs.get(shdr.sh_link as usize)?;
                let (strs_start, strs_end) = strs_shdr.get_data_range()?;
                let strs_buf = self.data.get_bytes(strs_start..strs_end)?;

                Some((
                    VerNeedIterator::new(
                        self.ehdr.endianness,
                        self.ehdr.class,
                        shdr.sh_info as u64,
                        0,
                        needs_buf,
                    ),
                    StringTable::new(strs_buf),
                ))
            }
            // It's possible to have symbol versioning with no NEEDs if we're an object that only
            // exports defined symbols.
            None => None,
        };

        // Wrap the VERDEF section and strings data in an iterator and string table (if any)
        let verdefs = match defs_opt {
            Some(shdr) => {
                let (start, end) = shdr.get_data_range()?;
                let defs_buf = self.data.get_bytes(start..end)?;

                let strs_shdr = shdrs.get(shdr.sh_link as usize)?;
                let (strs_start, strs_end) = strs_shdr.get_data_range()?;
                let strs_buf = self.data.get_bytes(strs_start..strs_end)?;

                Some((
                    VerDefIterator::new(
                        self.ehdr.endianness,
                        self.ehdr.class,
                        shdr.sh_info as u64,
                        0,
                        defs_buf,
                    ),
                    StringTable::new(strs_buf),
                ))
            }
            // It's possible to have symbol versioning with no NEEDs if we're an object that only
            // exports defined symbols.
            None => None,
        };

        // whew, we're done here!
        Ok(Some(SymbolVersionTable::new(
            version_ids,
            verneeds,
            verdefs,
        )))
    }
}

//  _            _
// | |_ ___  ___| |_ ___
// | __/ _ \/ __| __/ __|
// | ||  __/\__ \ |_\__ \
//  \__\___||___/\__|___/
//

#[cfg(test)]
mod interface_tests {
    use super::*;
    use crate::abi::{SHT_GNU_HASH, SHT_NOBITS, SHT_NOTE, SHT_NULL, SHT_REL, SHT_RELA, SHT_STRTAB};
    use crate::dynamic::Dyn;
    use crate::endian::AnyEndian;
    use crate::hash::sysv_hash;
    use crate::note::{Note, NoteGnuAbiTag, NoteGnuBuildId};
    use crate::relocation::Rela;
    use crate::segment::ProgramHeader;

    #[test]
    fn simultaenous_segments_parsing() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        // With the bytes interface, we should be able to get multiple lazy-parsing types concurrently,
        // since the trait is implemented for shared references.
        //
        // Get the segment table
        let iter = file.segments().expect("File should have a segment table");

        // Concurrently get the segment table again as an iterator and collect the headers into a vec
        let segments: Vec<ProgramHeader> = file
            .segments()
            .expect("File should have a segment table")
            .iter()
            .collect();

        let expected_phdr = ProgramHeader {
            p_type: abi::PT_PHDR,
            p_offset: 64,
            p_vaddr: 4194368,
            p_paddr: 4194368,
            p_filesz: 448,
            p_memsz: 448,
            p_flags: 5,
            p_align: 8,
        };

        // Assert we parsed the first header correctly
        assert_eq!(segments[0], expected_phdr);

        // Now use the original lazy-parsing table to parse out the first entry
        assert_eq!(
            iter.get(0).expect("should be able to parse phdr"),
            expected_phdr
        )
    }

    #[test]
    fn segments() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let segments: Vec<ProgramHeader> = file
            .segments()
            .expect("File should have a segment table")
            .iter()
            .collect();
        assert_eq!(
            segments[0],
            ProgramHeader {
                p_type: abi::PT_PHDR,
                p_offset: 64,
                p_vaddr: 4194368,
                p_paddr: 4194368,
                p_filesz: 448,
                p_memsz: 448,
                p_flags: 5,
                p_align: 8,
            }
        );
    }

    #[test]
    fn segments_phnum_in_shdr0() {
        let path = std::path::PathBuf::from("sample-objects/phnum.m68k.so");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let segments: Vec<ProgramHeader> = file
            .segments()
            .expect("File should have a segment table")
            .iter()
            .collect();
        assert_eq!(
            segments[0],
            ProgramHeader {
                p_type: abi::PT_PHDR,
                p_offset: 92,
                p_vaddr: 0,
                p_paddr: 0,
                p_filesz: 32,
                p_memsz: 32,
                p_flags: 0x20003,
                p_align: 0x40000,
            }
        );
    }

    #[test]
    fn section_headers() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let shdrs = file
            .section_headers()
            .expect("File should have a section table");

        let shdrs_vec: Vec<SectionHeader> = shdrs.iter().collect();

        assert_eq!(shdrs_vec[4].sh_type, SHT_GNU_HASH);
    }

    #[test]
    fn section_headers_with_strtab() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let (shdrs, strtab) = file
            .section_headers_with_strtab()
            .expect("shdrs should be parsable");
        let (shdrs, strtab) = (shdrs.unwrap(), strtab.unwrap());

        let with_names: Vec<(&str, SectionHeader)> = shdrs
            .iter()
            .map(|shdr| {
                (
                    strtab
                        .get(shdr.sh_name as usize)
                        .expect("Failed to get section name"),
                    shdr,
                )
            })
            .collect();

        let (name, shdr) = with_names[4];
        assert_eq!(name, ".gnu.hash");
        assert_eq!(shdr.sh_type, abi::SHT_GNU_HASH);
    }

    #[test]
    fn shnum_and_shstrndx_in_shdr0() {
        let path = std::path::PathBuf::from("sample-objects/shnum.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).unwrap();

        let (shdrs, strtab) = file
            .section_headers_with_strtab()
            .expect("shdrs should be parsable");
        let (shdrs, strtab) = (shdrs.unwrap(), strtab.unwrap());

        let shdrs_len = shdrs.len();
        assert_eq!(shdrs_len, 0xFF15);

        let shdr = shdrs.get(shdrs_len - 1).unwrap();
        let name = strtab
            .get(shdr.sh_name as usize)
            .expect("Failed to get section name");

        assert_eq!(name, ".shstrtab");
        assert_eq!(shdr.sh_type, abi::SHT_STRTAB);
    }

    #[test]
    fn section_header_by_name() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let shdr = file
            .section_header_by_name(".gnu.hash")
            .expect("section table should be parseable")
            .expect("file should have .gnu.hash section");

        assert_eq!(shdr.sh_type, SHT_GNU_HASH);

        let shdr = file
            .section_header_by_name(".not.found")
            .expect("section table should be parseable");

        assert_eq!(shdr, None);
    }

    #[test]
    fn find_common_data() {
        let path = std::path::PathBuf::from("sample-objects/symver.x86_64.so");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let elf_scns = file.find_common_data().expect("file should parse");

        // hello.so should find everything
        assert!(elf_scns.symtab.is_some());
        assert!(elf_scns.symtab_strs.is_some());
        assert!(elf_scns.dynsyms.is_some());
        assert!(elf_scns.dynsyms_strs.is_some());
        assert!(elf_scns.dynamic.is_some());
        assert!(elf_scns.sysv_hash.is_some());
        assert!(elf_scns.gnu_hash.is_some());
    }

    #[test]
    fn section_data() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let shdr = file
            .section_headers()
            .expect("File should have section table")
            .get(26)
            .expect("shdr should be parsable");

        assert_eq!(shdr.sh_type, SHT_NOBITS);

        let (data, chdr) = file
            .section_data(&shdr)
            .expect("Failed to get section data");

        assert_eq!(chdr, None);
        assert_eq!(data, &[]);
    }

    // Test all the different section_data_as* with a section of the wrong type
    #[test]
    fn section_data_as_wrong_type() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        // Section 0 is SHT_NULL, so all of the section_data_as* should error on it
        let shdr = file
            .section_headers()
            .expect("File should have section table")
            .get(0)
            .expect("shdr should be parsable");

        let err = file
            .section_data_as_strtab(&shdr)
            .expect_err("shdr0 should be the wrong type");
        assert!(
            matches!(
                err,
                ParseError::UnexpectedSectionType((SHT_NULL, SHT_STRTAB))
            ),
            "Unexpected Error type found: {err}"
        );

        let err = file
            .section_data_as_rels(&shdr)
            .expect_err("shdr0 should be the wrong type");
        assert!(
            matches!(err, ParseError::UnexpectedSectionType((SHT_NULL, SHT_REL))),
            "Unexpected Error type found: {err}"
        );

        let err = file
            .section_data_as_relas(&shdr)
            .expect_err("shdr0 should be the wrong type");
        assert!(
            matches!(err, ParseError::UnexpectedSectionType((SHT_NULL, SHT_RELA))),
            "Unexpected Error type found: {err}"
        );

        let err = file
            .section_data_as_notes(&shdr)
            .expect_err("shdr0 should be the wrong type");
        assert!(
            matches!(err, ParseError::UnexpectedSectionType((SHT_NULL, SHT_NOTE))),
            "Unexpected Error type found: {err}"
        );
    }

    #[test]
    fn section_data_as_strtab() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let shdr = file
            .section_headers()
            .expect("File should have section table")
            .get(file.ehdr.e_shstrndx as usize)
            .expect("shdr should be parsable");

        let strtab = file
            .section_data_as_strtab(&shdr)
            .expect("Failed to read strtab");

        assert_eq!(
            strtab.get(1).expect("Failed to get strtab entry"),
            ".symtab"
        );
    }

    #[test]
    fn section_data_as_relas() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let shdr = file
            .section_headers()
            .expect("File should have section table")
            .get(10)
            .expect("Failed to get rela shdr");

        let mut relas = file
            .section_data_as_relas(&shdr)
            .expect("Failed to read relas section");
        assert_eq!(
            relas.next().expect("Failed to get rela entry"),
            Rela {
                r_offset: 6293704,
                r_sym: 1,
                r_type: 7,
                r_addend: 0,
            }
        );
        assert_eq!(
            relas.next().expect("Failed to get rela entry"),
            Rela {
                r_offset: 6293712,
                r_sym: 2,
                r_type: 7,
                r_addend: 0,
            }
        );
        assert!(relas.next().is_none());
    }

    #[test]
    fn section_data_as_notes() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let shdr = file
            .section_headers()
            .expect("File should have section table")
            .get(2)
            .expect("Failed to get note shdr");

        let mut notes = file
            .section_data_as_notes(&shdr)
            .expect("Failed to read note section");
        assert_eq!(
            notes.next().expect("Failed to get first note"),
            Note::GnuAbiTag(NoteGnuAbiTag {
                os: 0,
                major: 2,
                minor: 6,
                subminor: 32
            })
        );
        assert!(notes.next().is_none());
    }

    #[test]
    fn segment_data_as_notes() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let phdr = file
            .segments()
            .expect("File should have segmetn table")
            .get(5)
            .expect("Failed to get notes phdr");

        let mut notes = file
            .segment_data_as_notes(&phdr)
            .expect("Failed to read notes segment");
        assert_eq!(
            notes.next().expect("Failed to get first note"),
            Note::GnuAbiTag(NoteGnuAbiTag {
                os: 0,
                major: 2,
                minor: 6,
                subminor: 32
            })
        );
        assert_eq!(
            notes.next().expect("Failed to get second note"),
            Note::GnuBuildId(NoteGnuBuildId(&[
                119, 65, 159, 13, 165, 16, 131, 12, 87, 167, 200, 204, 176, 238, 133, 95, 238, 211,
                118, 163
            ]))
        );
        assert!(notes.next().is_none());
    }

    #[test]
    fn dynamic() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let mut dynamic = file
            .dynamic()
            .expect("Failed to parse .dynamic")
            .expect("Failed to find .dynamic")
            .iter();
        assert_eq!(
            dynamic.next().expect("Failed to get dyn entry"),
            Dyn {
                d_tag: abi::DT_NEEDED,
                d_un: 1
            }
        );
        assert_eq!(
            dynamic.next().expect("Failed to get dyn entry"),
            Dyn {
                d_tag: abi::DT_INIT,
                d_un: 4195216
            }
        );
    }

    #[test]
    fn symbol_table() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let (symtab, strtab) = file
            .symbol_table()
            .expect("Failed to read symbol table")
            .expect("Failed to find symbol table");
        let symbol = symtab.get(30).expect("Failed to get symbol");
        assert_eq!(
            symbol,
            Symbol {
                st_name: 19,
                st_value: 6293200,
                st_size: 0,
                st_shndx: 21,
                st_info: 1,
                st_other: 0,
            }
        );
        assert_eq!(
            strtab
                .get(symbol.st_name as usize)
                .expect("Failed to get name from strtab"),
            "__JCR_LIST__"
        );
    }

    #[test]
    fn dynamic_symbol_table() {
        let path = std::path::PathBuf::from("sample-objects/basic.x86_64");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let (symtab, strtab) = file
            .dynamic_symbol_table()
            .expect("Failed to read symbol table")
            .expect("Failed to find symbol table");
        let symbol = symtab.get(1).expect("Failed to get symbol");
        assert_eq!(
            symbol,
            Symbol {
                st_name: 11,
                st_value: 0,
                st_size: 0,
                st_shndx: 0,
                st_info: 18,
                st_other: 0,
            }
        );
        assert_eq!(
            strtab
                .get(symbol.st_name as usize)
                .expect("Failed to get name from strtab"),
            "memset"
        );
    }

    #[test]
    fn symbol_version_table() {
        let path = std::path::PathBuf::from("sample-objects/symver.x86_64.so");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        let vst = file
            .symbol_version_table()
            .expect("Failed to parse GNU symbol versions")
            .expect("Failed to find GNU symbol versions");

        let req = vst
            .get_requirement(2)
            .expect("Failed to parse NEED")
            .expect("Failed to find NEED");
        assert_eq!(req.file, "libc.so.6");
        assert_eq!(req.name, "GLIBC_2.2.5");
        assert_eq!(req.hash, 0x9691A75);

        let req = vst.get_requirement(3).expect("Failed to parse NEED");
        assert!(req.is_none());

        let req = vst.get_requirement(4).expect("Failed to parse NEED");
        assert!(req.is_none());

        let req = vst
            .get_requirement(5)
            .expect("Failed to parse NEED")
            .expect("Failed to find NEED");
        assert_eq!(req.file, "libc.so.6");
        assert_eq!(req.name, "GLIBC_2.2.5");
        assert_eq!(req.hash, 0x9691A75);

        let def = vst
            .get_definition(3)
            .expect("Failed to parse DEF")
            .expect("Failed to find DEF");
        assert_eq!(def.hash, 0xC33237F);
        assert_eq!(def.flags, 1);
        assert!(!def.hidden);
        let def_names: Vec<&str> = def.names.map(|res| res.expect("should parse")).collect();
        assert_eq!(def_names, &["hello.so"]);

        let def = vst
            .get_definition(7)
            .expect("Failed to parse DEF")
            .expect("Failed to find DEF");
        assert_eq!(def.hash, 0x1570B62);
        assert_eq!(def.flags, 0);
        assert!(def.hidden);
        let def_names: Vec<&str> = def.names.map(|res| res.expect("should parse")).collect();
        assert_eq!(def_names, &["HELLO_1.42"]);
    }

    #[test]
    fn sysv_hash_table() {
        let path = std::path::PathBuf::from("sample-objects/symver.x86_64.so");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("Open test1");

        // Look up the SysV hash section header
        let common = file.find_common_data().expect("should parse");
        let hash_table = common.sysv_hash.expect("should have .hash section");

        // Get the dynamic symbol table.
        let (symtab, strtab) = file
            .dynamic_symbol_table()
            .expect("Failed to read symbol table")
            .expect("Failed to find symbol table");

        // Verify that these three symbols all collide in the hash table's buckets
        assert_eq!(sysv_hash(b"use_memset_v2"), 0x8080542);
        assert_eq!(sysv_hash(b"__gmon_start__"), 0xF4D007F);
        assert_eq!(sysv_hash(b"memset"), 0x73C49C4);
        assert_eq!(sysv_hash(b"use_memset_v2") % 3, 0);
        assert_eq!(sysv_hash(b"__gmon_start__") % 3, 0);
        assert_eq!(sysv_hash(b"memset") % 3, 0);

        // Use the hash table to find a given symbol in it.
        let (sym_idx, sym) = hash_table
            .find(b"memset", &symtab, &strtab)
            .expect("Failed to parse hash")
            .expect("Failed to find hash");

        // Verify that we got the same symbol from the hash table we expected
        assert_eq!(sym_idx, 2);
        assert_eq!(strtab.get(sym.st_name as usize).unwrap(), "memset");
        assert_eq!(
            sym,
            symtab.get(sym_idx).expect("Failed to get expected sym")
        );
    }

    #[test]
    fn gnu_hash_table() {
        let path = std::path::PathBuf::from("sample-objects/symver.x86_64.so");
        let file_data = std::fs::read(path).expect("Could not read file.");
        let slice = file_data.as_slice();
        let file = ElfBytes::<AnyEndian>::minimal_parse(slice).unwrap();

        // Look up the SysV hash section header
        let common = file.find_common_data().unwrap();
        let hash_table = common.gnu_hash.expect("should have .gnu.hash section");

        // Get the dynamic symbol table.
        let (symtab, strtab) = (common.dynsyms.unwrap(), common.dynsyms_strs.unwrap());

        // manually look one up by explicit name to make sure the above loop is doing something
        let (sym_idx, sym) = hash_table
            .find(b"use_memset", &symtab, &strtab)
            .expect("Failed to parse hash")
            .expect("Failed to find hash");

        // Verify that we got the same symbol from the hash table we expected
        assert_eq!(sym_idx, 9);
        assert_eq!(strtab.get(sym.st_name as usize).unwrap(), "use_memset");
        assert_eq!(
            sym,
            symtab.get(sym_idx).expect("Failed to get expected sym")
        );
    }
}

#[cfg(test)]
mod arch_tests {
    use super::*;
    use crate::endian::AnyEndian;

    // Basic smoke test which parses out symbols and headers for a given sample object of a given architecture
    macro_rules! arch_test {
        ( $arch:expr, $e_machine:expr, $endian:expr) => {{
            let path_str = format!("sample-objects/symver.{}.so", $arch);
            let path = std::path::PathBuf::from(path_str);
            let file_data = std::fs::read(path).expect("file should exist");
            let slice = file_data.as_slice();
            let file = ElfBytes::<AnyEndian>::minimal_parse(slice).expect("should parse");

            assert_eq!(file.ehdr.e_machine, $e_machine);
            assert_eq!(file.ehdr.endianness, $endian);

            let (shdrs, strtab) = file.section_headers_with_strtab().expect("should parse");
            let (shdrs, strtab) = (shdrs.unwrap(), strtab.unwrap());
            let _: Vec<_> = shdrs
                .iter()
                .map(|shdr| {
                    (
                        strtab.get(shdr.sh_name as usize).expect("should parse"),
                        shdr,
                    )
                })
                .collect();

            let common = file.find_common_data().expect("should parse");

            // parse out all the normal symbol table symbols with their names
            {
                let symtab = common.symtab.unwrap();
                let strtab = common.symtab_strs.unwrap();
                let _: Vec<_> = symtab
                    .iter()
                    .map(|sym| (strtab.get(sym.st_name as usize).expect("should parse"), sym))
                    .collect();
            }

            // parse out all the dynamic symbols and look them up in the gnu hash table
            {
                let symtab = common.dynsyms.unwrap();
                let strtab = common.dynsyms_strs.unwrap();
                let symbols_with_names: Vec<_> = symtab
                    .iter()
                    .map(|sym| (strtab.get_raw(sym.st_name as usize).expect("should parse"), sym))
                    .collect();

                let hash_table = common.gnu_hash.unwrap();

                // look up each entry that should be in the hash table and make sure its there
                let start_idx = hash_table.hdr.table_start_idx as usize;
                for sym_idx in 0..symtab.len() {
                    let (symbol_name, symbol) = symbols_with_names.get(sym_idx).unwrap();

                    let result = hash_table
                        .find(symbol_name, &symtab, &strtab)
                        .expect("Failed to parse hash");

                    if sym_idx < start_idx {
                        assert_eq!(result, None);
                    } else {
                        let (hash_sym_idx, hash_symbol) = result.unwrap();

                        // Verify that we got the same symbol from the hash table we expected
                        assert_eq!(sym_idx, hash_sym_idx);
                        assert_eq!(
                            strtab.get_raw(hash_symbol.st_name as usize).unwrap(),
                            *symbol_name
                        );
                        assert_eq!(*symbol, hash_symbol);
                    }
                }
            }

            let phdrs = file.segments().unwrap();
            let note_phdrs: Vec<_> = phdrs
                .iter()
                .filter(|phdr| phdr.p_type == abi::PT_NOTE)
                .collect();
            for phdr in note_phdrs {
                let _: Vec<_> = file
                    .segment_data_as_notes(&phdr)
                    .expect("should parse")
                    .collect();
                }
        }};
    }

    #[test]
    fn x86_64() {
        arch_test!("x86_64", abi::EM_X86_64, AnyEndian::Little);
    }

    #[test]
    fn m68k() {
        arch_test!("m68k", abi::EM_68K, AnyEndian::Big);
    }

    #[test]
    fn aarch64() {
        arch_test!("aarch64", abi::EM_AARCH64, AnyEndian::Little);
    }

    #[test]
    fn armhf() {
        arch_test!("armhf", abi::EM_ARM, AnyEndian::Little);
    }

    #[test]
    fn powerpc64() {
        arch_test!("powerpc64", abi::EM_PPC64, AnyEndian::Big);
    }

    #[test]
    fn powerpc64le() {
        arch_test!("powerpc64le", abi::EM_PPC64, AnyEndian::Little);
    }

    #[test]
    fn riscv64() {
        arch_test!("riscv64", abi::EM_RISCV, AnyEndian::Little);
    }
}