crypto_bigint/uint/
sqrt.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
//! [`Uint`] square root operations.

use super::Uint;
use crate::{Limb, Word};
use subtle::{ConstantTimeEq, CtOption};

impl<const LIMBS: usize> Uint<LIMBS> {
    /// See [`Self::sqrt_vartime`].
    #[deprecated(
        since = "0.5.3",
        note = "This functionality will be moved to `sqrt_vartime` in a future release."
    )]
    pub const fn sqrt(&self) -> Self {
        self.sqrt_vartime()
    }

    /// Computes √(`self`)
    /// Uses Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.13
    ///
    /// Callers can check if `self` is a square by squaring the result
    pub const fn sqrt_vartime(&self) -> Self {
        let max_bits = (self.bits_vartime() + 1) >> 1;
        let cap = Self::ONE.shl_vartime(max_bits);
        let mut guess = cap; // ≥ √(`self`)
        let mut xn = {
            let q = self.wrapping_div(&guess);
            let t = guess.wrapping_add(&q);
            t.shr_vartime(1)
        };

        // If guess increased, the initial guess was low.
        // Repeat until reverse course.
        while Uint::ct_lt(&guess, &xn).is_true_vartime() {
            // Sometimes an increase is too far, especially with large
            // powers, and then takes a long time to walk back.  The upper
            // bound is based on bit size, so saturate on that.
            let le = Limb::ct_le(Limb(xn.bits_vartime() as Word), Limb(max_bits as Word));
            guess = Self::ct_select(&cap, &xn, le);
            xn = {
                let q = self.wrapping_div(&guess);
                let t = guess.wrapping_add(&q);
                t.shr_vartime(1)
            };
        }

        // Repeat while guess decreases.
        while Uint::ct_gt(&guess, &xn).is_true_vartime() && xn.ct_is_nonzero().is_true_vartime() {
            guess = xn;
            xn = {
                let q = self.wrapping_div(&guess);
                let t = guess.wrapping_add(&q);
                t.shr_vartime(1)
            };
        }

        Self::ct_select(&Self::ZERO, &guess, self.ct_is_nonzero())
    }

    /// See [`Self::wrapping_sqrt_vartime`].
    #[deprecated(
        since = "0.5.3",
        note = "This functionality will be moved to `wrapping_sqrt_vartime` in a future release."
    )]
    pub const fn wrapping_sqrt(&self) -> Self {
        self.wrapping_sqrt_vartime()
    }

    /// Wrapped sqrt is just normal √(`self`)
    /// There’s no way wrapping could ever happen.
    /// This function exists, so that all operations are accounted for in the wrapping operations.
    pub const fn wrapping_sqrt_vartime(&self) -> Self {
        self.sqrt_vartime()
    }

    /// See [`Self::checked_sqrt_vartime`].
    #[deprecated(
        since = "0.5.3",
        note = "This functionality will be moved to `checked_sqrt_vartime` in a future release."
    )]
    pub fn checked_sqrt(&self) -> CtOption<Self> {
        self.checked_sqrt_vartime()
    }

    /// Perform checked sqrt, returning a [`CtOption`] which `is_some`
    /// only if the √(`self`)² == self
    pub fn checked_sqrt_vartime(&self) -> CtOption<Self> {
        let r = self.sqrt_vartime();
        let s = r.wrapping_mul(&r);
        CtOption::new(r, ConstantTimeEq::ct_eq(self, &s))
    }
}

#[cfg(test)]
mod tests {
    use crate::{Limb, U256};

    #[cfg(feature = "rand")]
    use {
        crate::{CheckedMul, Random, U512},
        rand_chacha::ChaChaRng,
        rand_core::{RngCore, SeedableRng},
    };

    #[test]
    fn edge() {
        assert_eq!(U256::ZERO.sqrt_vartime(), U256::ZERO);
        assert_eq!(U256::ONE.sqrt_vartime(), U256::ONE);
        let mut half = U256::ZERO;
        for i in 0..half.limbs.len() / 2 {
            half.limbs[i] = Limb::MAX;
        }
        assert_eq!(U256::MAX.sqrt_vartime(), half,);
    }

    #[test]
    fn simple() {
        let tests = [
            (4u8, 2u8),
            (9, 3),
            (16, 4),
            (25, 5),
            (36, 6),
            (49, 7),
            (64, 8),
            (81, 9),
            (100, 10),
            (121, 11),
            (144, 12),
            (169, 13),
        ];
        for (a, e) in &tests {
            let l = U256::from(*a);
            let r = U256::from(*e);
            assert_eq!(l.sqrt_vartime(), r);
            assert_eq!(l.checked_sqrt_vartime().is_some().unwrap_u8(), 1u8);
        }
    }

    #[test]
    fn nonsquares() {
        assert_eq!(U256::from(2u8).sqrt_vartime(), U256::from(1u8));
        assert_eq!(
            U256::from(2u8).checked_sqrt_vartime().is_some().unwrap_u8(),
            0
        );
        assert_eq!(U256::from(3u8).sqrt_vartime(), U256::from(1u8));
        assert_eq!(
            U256::from(3u8).checked_sqrt_vartime().is_some().unwrap_u8(),
            0
        );
        assert_eq!(U256::from(5u8).sqrt_vartime(), U256::from(2u8));
        assert_eq!(U256::from(6u8).sqrt_vartime(), U256::from(2u8));
        assert_eq!(U256::from(7u8).sqrt_vartime(), U256::from(2u8));
        assert_eq!(U256::from(8u8).sqrt_vartime(), U256::from(2u8));
        assert_eq!(U256::from(10u8).sqrt_vartime(), U256::from(3u8));
    }

    #[cfg(feature = "rand")]
    #[test]
    fn fuzz() {
        let mut rng = ChaChaRng::from_seed([7u8; 32]);
        for _ in 0..50 {
            let t = rng.next_u32() as u64;
            let s = U256::from(t);
            let s2 = s.checked_mul(&s).unwrap();
            assert_eq!(s2.sqrt_vartime(), s);
            assert_eq!(s2.checked_sqrt_vartime().is_some().unwrap_u8(), 1);
        }

        for _ in 0..50 {
            let s = U256::random(&mut rng);
            let mut s2 = U512::ZERO;
            s2.limbs[..s.limbs.len()].copy_from_slice(&s.limbs);
            assert_eq!(s.square().sqrt_vartime(), s2);
        }
    }
}