bon_macros/builder/builder_gen/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
mod builder_decl;
mod builder_derives;
mod finish_fn;
mod getters;
mod member;
mod models;
mod setters;
mod start_fn;
mod state_mod;
mod top_level_config;

pub(crate) mod input_fn;
pub(crate) mod input_struct;
pub(crate) use top_level_config::TopLevelConfig;

use crate::util::prelude::*;
use getters::GettersCtx;
use member::{CustomField, Member, MemberOrigin, NamedMember, RawMember, StartFnMember};
use models::{AssocMethodCtx, AssocMethodReceiverCtx, BuilderGenCtx, FinishFnBody, Generics};
use setters::SettersCtx;

pub(crate) struct MacroOutput {
    pub(crate) start_fn: syn::ItemFn,
    pub(crate) other_items: TokenStream,
}

impl BuilderGenCtx {
    fn receiver(&self) -> Option<&AssocMethodReceiverCtx> {
        self.assoc_method_ctx.as_ref()?.receiver.as_ref()
    }

    fn named_members(&self) -> impl Iterator<Item = &NamedMember> {
        self.members.iter().filter_map(Member::as_named)
    }

    fn custom_fields(&self) -> impl Iterator<Item = &CustomField> {
        self.members.iter().filter_map(Member::as_field)
    }

    fn start_fn_args(&self) -> impl Iterator<Item = &StartFnMember> {
        self.members.iter().filter_map(Member::as_start_fn)
    }

    fn stateful_members(&self) -> impl Iterator<Item = &NamedMember> {
        self.named_members().filter(|member| member.is_stateful())
    }

    pub(crate) fn output(self) -> Result<MacroOutput> {
        let mut start_fn = self.start_fn();
        let state_mod = state_mod::StateModGenCtx::new(&self).state_mod();
        let builder_decl = self.builder_decl();
        let builder_impl = self.builder_impl()?;
        let builder_derives = self.builder_derives();

        let default_allows = syn::parse_quote!(#[allow(
            // We have a `deprecated` lint on all `bon::__` items which we
            // use in the generated code extensively
            deprecated
        )]);

        let allows = self.allow_attrs.iter().cloned().chain([default_allows]);

        // -- Postprocessing --
        // Here we parse all items back and add the `allow` attributes to them.
        let other_items = quote! {
            #state_mod
            #builder_decl
            #builder_derives
            #builder_impl
        };

        let other_items_str = other_items.to_string();

        let other_items: syn::File = syn::parse2(other_items).map_err(|err| {
            err!(
                &Span::call_site(),
                "bug in the `bon` crate: the macro generated code that contains syntax errors; \
                please report this issue at our Github repository: \
                https://github.com/elastio/bon;\n\
                syntax error in generated code: {err:#?};\n\
                generated code:\n\
                ```rust
                {other_items_str}\n\
                ```",
            )
        })?;

        let mut other_items = other_items.items;

        for item in &mut other_items {
            if let Some(attrs) = item.attrs_mut() {
                attrs.extend(allows.clone());
            }
        }

        start_fn.attrs.extend(allows);

        Ok(MacroOutput {
            start_fn,
            other_items: quote!(#(#other_items)*),
        })
    }

    fn builder_impl(&self) -> Result<TokenStream> {
        let finish_fn = self.finish_fn();
        let accessor_methods = self
            .named_members()
            .map(|member| {
                let setters = SettersCtx::new(self, member).setter_methods()?;
                let getters = GettersCtx::new(self, member)
                    .map(GettersCtx::getter_methods)
                    .transpose()?
                    .unwrap_or_default();

                // Output all accessor methods for the same member adjecently.
                // This is important in the generated rustdoc output, because
                // rustdoc lists methods in the order they appear in the source.
                Ok([setters, getters])
            })
            .collect::<Result<Vec<_>>>()?
            .into_iter()
            .flatten();

        let generics_decl = &self.generics.decl_without_defaults;
        let generic_args = &self.generics.args;
        let where_clause = &self.generics.where_clause;
        let builder_ident = &self.builder_type.ident;
        let state_mod = &self.state_mod.ident;
        let state_var = &self.state_var;

        let allows = allow_warnings_on_member_types();

        Ok(quote! {
            #allows
            #[automatically_derived]
            impl<
                #(#generics_decl,)*
                #state_var: #state_mod::State
            >
            #builder_ident<#(#generic_args,)* #state_var>
            #where_clause
            {
                #finish_fn
                #(#accessor_methods)*
            }
        })
    }

    /// Generates code that has no meaning to the compiler, but it helps
    /// IDEs to provide better code highlighting, completions and other
    /// hints.
    fn ide_hints(&self) -> TokenStream {
        let type_patterns = self
            .on
            .iter()
            .map(|params| &params.type_pattern)
            .collect::<Vec<_>>();

        if type_patterns.is_empty() {
            return quote! {};
        }

        quote! {
            // This is wrapped in a special cfg set by `rust-analyzer` to enable this
            // code for rust-analyzer's analysis only, but prevent the code from being
            // compiled by `rustc`. Rust Analyzer should be able to use the syntax
            // provided inside of the block to figure out the semantic meaning of
            // the tokens passed to the attribute.
            #[allow(unexpected_cfgs)]
            {
                #[cfg(rust_analyzer)]
                {
                    // Let IDEs know that these are type patterns like the ones that
                    // could be written in a type annotation for a variable. Note that
                    // we don't initialize the variable with any value because we don't
                    // have any meaningful value to assign to this variable, especially
                    // because its type may contain wildcard patterns like `_`. This is
                    // used only to signal the IDEs that these tokens are meant to be
                    // type patterns by placing them in the context where type patterns
                    // are expected.
                    let _: (#(#type_patterns,)*);
                }
            }
        }
    }

    fn phantom_data(&self) -> TokenStream {
        let member_types = self.members.iter().filter_map(|member| {
            match member {
                // The types of these members already appear in the struct as regular fields.
                Member::StartFn(_) | Member::Field(_) | Member::Named(_) => None,
                Member::FinishFn(member) => Some(member.ty.norm.as_ref()),
                Member::Skip(member) => Some(member.norm_ty.as_ref()),
            }
        });

        let receiver_ty = self
            .assoc_method_ctx
            .as_ref()
            .map(|ctx| ctx.self_ty.as_ref());

        let generic_types = self.generics.args.iter().filter_map(|arg| match arg {
            syn::GenericArgument::Type(ty) => Some(ty),
            _ => None,
        });

        let types = std::iter::empty()
            .chain(receiver_ty)
            .chain(member_types)
            .chain(generic_types)
            .map(|ty| {
                // Wrap `ty` in another phantom data because it can be `?Sized`,
                // and simply using it as a type of the tuple member would
                // be wrong, because tuple's members must be sized.
                //
                // We also wrap this in an `fn() -> ...` to make the compiler think
                // that the builder doesn't "own" an instance of the given type.
                // This removes unnecessary requirements when evaluating the
                // applicability of the auto traits.
                quote!(fn() -> ::core::marker::PhantomData<#ty>)
            });

        let lifetimes = self.generics.args.iter().filter_map(|arg| match arg {
            syn::GenericArgument::Lifetime(lifetime) => Some(lifetime),
            _ => None,
        });

        let state_var = &self.state_var;

        quote! {
            ::core::marker::PhantomData<(
                // We have to store the builder state in phantom data otherwise it
                // would be reported as an unused type parameter.
                //
                // We also wrap this in an `fn() -> ...` to make the compiler think
                // that the builder doesn't "own" an instance of the given type.
                // This removes unnecessary requirements when evaluating the
                // applicability of the auto traits.
                fn() -> #state_var,

                // Even though lifetimes will most likely be used somewhere in
                // member types, it is not guaranteed in case of functions/methods,
                // so we mention them all separately. This covers a special case
                // for function builders where the lifetime can be entirely unused
                // (the language permis that).
                //
                // This edge case was discovered thanks to @tonywu6 ❤️:
                // https://github.com/elastio/bon/issues/206
                #( &#lifetimes (), )*

                // There is an interesting quirk with lifetimes in Rust, which is the
                // reason why we thoughtlessly store all the function parameter types
                // in phantom data here.
                //
                // Suppose a function was defined with an argument of type `&'a T`
                // and then we generate an impl block (simplified):
                //
                // ```
                // impl<'a, T, U> for Foo<U>
                // where
                //     U: Into<&'a T>,
                // {}
                // ```
                // Then compiler will complain with the message "the parameter type `T`
                // may not live long enough". So we would need to manually add the bound
                // `T: 'a` to fix this. However, it's hard to infer such a bound in macro
                // context. A workaround for that would be to store the `&'a T` inside of
                // the struct itself, which auto-implies this bound for us implicitly.
                //
                // That's a weird implicit behavior in Rust, I suppose there is a reasonable
                // explanation for it, I just didn't care to research it yet ¯\_(ツ)_/¯.
                #(#types,)*
            )>
        }
    }
}

fn allow_warnings_on_member_types() -> TokenStream {
    quote! {
        // This warning may occur when the original unnormalized syntax was
        // using parens around an `impl Trait` like that:
        // ```
        // &(impl Clone + Default)
        // ```
        // in which case the normalized version will be:
        // ```
        // &(T)
        // ```
        //
        // And it triggers the warning. We just suppress it here.
        #[allow(unused_parens)]
    }
}