openvm_algebra_moduli_macros/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
#![feature(proc_macro_diagnostic)]
extern crate proc_macro;
use std::sync::atomic::AtomicUsize;
use openvm_macros_common::{string_to_bytes, MacroArgs};
use proc_macro::TokenStream;
use quote::format_ident;
use syn::{
parse::{Parse, ParseStream},
parse_macro_input, LitStr, Token,
};
static MOD_IDX: AtomicUsize = AtomicUsize::new(0);
/// This macro generates the code to setup the modulus for a given prime. Also it places the moduli into a special static variable to be later extracted from the ELF and used by the VM.
/// Usage:
/// ```
/// moduli_declare! {
/// Bls12381 { modulus = "0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab" },
/// Bn254 { modulus = "21888242871839275222246405745257275088696311157297823662689037894645226208583" },
/// }
/// ```
/// This creates two structs, `Bls12381` and `Bn254`, each representing the modular arithmetic class (implementing `Add`, `Sub` and so on).
#[proc_macro]
pub fn moduli_declare(input: TokenStream) -> TokenStream {
let MacroArgs { items } = parse_macro_input!(input as MacroArgs);
let mut output = Vec::new();
let span = proc_macro::Span::call_site();
for item in items {
let struct_name = item.name.to_string();
let struct_name = syn::Ident::new(&struct_name, span.into());
let mut modulus: Option<String> = None;
for param in item.params {
match param.name.to_string().as_str() {
"modulus" => {
if let syn::Expr::Lit(syn::ExprLit {
lit: syn::Lit::Str(value),
..
}) = param.value
{
modulus = Some(value.value());
} else {
return syn::Error::new_spanned(param.value, "Expected a string literal")
.to_compile_error()
.into();
}
}
_ => {
panic!("Unknown parameter {}", param.name);
}
}
}
// Parsing the parameters is over at this point
let mod_idx = MOD_IDX.fetch_add(1, std::sync::atomic::Ordering::SeqCst);
let modulus = modulus.expect("modulus parameter is required");
let modulus_bytes = string_to_bytes(&modulus);
let mut limbs = modulus_bytes.len();
let mut block_size = 32;
if limbs <= 32 {
limbs = 32;
} else if limbs <= 48 {
limbs = 48;
block_size = 16;
} else {
panic!("limbs must be at most 48");
}
let modulus_bytes = modulus_bytes
.into_iter()
.chain(vec![0u8; limbs])
.take(limbs)
.collect::<Vec<_>>();
let modulus_hex = modulus_bytes
.iter()
.rev()
.map(|x| format!("{:02x}", x))
.collect::<Vec<_>>()
.join("");
// TODO: can this be simplified?
macro_rules! create_extern_func {
($name:ident) => {
let $name = syn::Ident::new(
&format!("{}_{}", stringify!($name), modulus_hex),
span.into(),
);
};
}
create_extern_func!(add_extern_func);
create_extern_func!(sub_extern_func);
create_extern_func!(mul_extern_func);
create_extern_func!(div_extern_func);
create_extern_func!(is_eq_extern_func);
let block_size = proc_macro::Literal::usize_unsuffixed(block_size);
let block_size = syn::Lit::new(block_size.to_string().parse::<_>().unwrap());
let module_name = format_ident!("algebra_impl_{}", mod_idx);
let result = TokenStream::from(quote::quote_spanned! { span.into() =>
#[derive(Clone, Eq, serde::Serialize, serde::Deserialize)]
#[repr(C, align(#block_size))]
pub struct #struct_name(#[serde(with = "openvm_algebra_guest::BigArray")] [u8; #limbs]);
extern "C" {
fn #add_extern_func(rd: usize, rs1: usize, rs2: usize);
fn #sub_extern_func(rd: usize, rs1: usize, rs2: usize);
fn #mul_extern_func(rd: usize, rs1: usize, rs2: usize);
fn #div_extern_func(rd: usize, rs1: usize, rs2: usize);
fn #is_eq_extern_func(rs1: usize, rs2: usize) -> bool;
}
impl #struct_name {
#[inline(always)]
const fn from_const_u8(val: u8) -> Self {
let mut bytes = [0; #limbs];
bytes[0] = val;
Self(bytes)
}
const fn from_const_bytes(bytes: [u8; #limbs]) -> Self {
Self(bytes)
}
#[inline(always)]
fn add_assign_impl(&mut self, other: &Self) {
#[cfg(not(target_os = "zkvm"))]
{
*self = Self::from_biguint(
(self.as_biguint() + other.as_biguint()) % Self::modulus_biguint(),
);
}
#[cfg(target_os = "zkvm")]
{
unsafe {
#add_extern_func(
self as *mut Self as usize,
self as *const Self as usize,
other as *const Self as usize,
);
}
}
}
#[inline(always)]
fn sub_assign_impl(&mut self, other: &Self) {
#[cfg(not(target_os = "zkvm"))]
{
let modulus = Self::modulus_biguint();
*self = Self::from_biguint(
(self.as_biguint() + modulus.clone() - other.as_biguint()) % modulus,
);
}
#[cfg(target_os = "zkvm")]
{
unsafe {
#sub_extern_func(
self as *mut Self as usize,
self as *const Self as usize,
other as *const Self as usize,
);
}
}
}
#[inline(always)]
fn mul_assign_impl(&mut self, other: &Self) {
#[cfg(not(target_os = "zkvm"))]
{
*self = Self::from_biguint(
(self.as_biguint() * other.as_biguint()) % Self::modulus_biguint(),
);
}
#[cfg(target_os = "zkvm")]
{
unsafe {
#mul_extern_func(
self as *mut Self as usize,
self as *const Self as usize,
other as *const Self as usize,
);
}
}
}
#[inline(always)]
fn div_assign_unsafe_impl(&mut self, other: &Self) {
#[cfg(not(target_os = "zkvm"))]
{
let modulus = Self::modulus_biguint();
let inv = other.as_biguint().modinv(&modulus).unwrap();
*self = Self::from_biguint((self.as_biguint() * inv) % modulus);
}
#[cfg(target_os = "zkvm")]
{
unsafe {
#div_extern_func(
self as *mut Self as usize,
self as *const Self as usize,
other as *const Self as usize,
);
}
}
}
/// SAFETY: `dst_ptr` must be a raw pointer to `&mut Self`.
/// It will be written to only at the very end .
#[inline(always)]
unsafe fn add_refs_impl(&self, other: &Self, dst_ptr: *mut Self) {
#[cfg(not(target_os = "zkvm"))]
{
let mut res = self.clone();
res += other;
// BEWARE order of operations: when dst_ptr = other as pointers
let dst = unsafe { &mut *dst_ptr };
*dst = res;
}
#[cfg(target_os = "zkvm")]
{
unsafe {
#add_extern_func(
dst_ptr as usize,
self as *const #struct_name as usize,
other as *const #struct_name as usize,
);
}
}
}
/// SAFETY: `dst_ptr` must be a raw pointer to `&mut Self`.
/// It will be written to only at the very end .
#[inline(always)]
unsafe fn sub_refs_impl(&self, other: &Self, dst_ptr: *mut Self) {
#[cfg(not(target_os = "zkvm"))]
{
let mut res = self.clone();
res -= other;
// BEWARE order of operations: when dst_ptr = other as pointers
let dst = unsafe { &mut *dst_ptr };
*dst = res;
}
#[cfg(target_os = "zkvm")]
{
unsafe {
#sub_extern_func(
dst_ptr as usize,
self as *const #struct_name as usize,
other as *const #struct_name as usize,
);
}
}
}
/// SAFETY: `dst_ptr` must be a raw pointer to `&mut Self`.
/// It will be written to only at the very end .
#[inline(always)]
unsafe fn mul_refs_impl(&self, other: &Self, dst_ptr: *mut Self) {
#[cfg(not(target_os = "zkvm"))]
{
let mut res = self.clone();
res *= other;
// BEWARE order of operations: when dst_ptr = other as pointers
let dst = unsafe { &mut *dst_ptr };
*dst = res;
}
#[cfg(target_os = "zkvm")]
{
unsafe {
#mul_extern_func(
dst_ptr as usize,
self as *const #struct_name as usize,
other as *const #struct_name as usize,
);
}
}
}
#[inline(always)]
fn div_unsafe_refs_impl(&self, other: &Self) -> Self {
#[cfg(not(target_os = "zkvm"))]
{
let modulus = Self::modulus_biguint();
let inv = other.as_biguint().modinv(&modulus).unwrap();
Self::from_biguint((self.as_biguint() * inv) % modulus)
}
#[cfg(target_os = "zkvm")]
{
let mut uninit: core::mem::MaybeUninit<#struct_name> = core::mem::MaybeUninit::uninit();
unsafe {
#div_extern_func(
uninit.as_mut_ptr() as usize,
self as *const #struct_name as usize,
other as *const #struct_name as usize,
);
}
unsafe { uninit.assume_init() }
}
}
#[inline(always)]
fn eq_impl(&self, other: &Self) -> bool {
#[cfg(not(target_os = "zkvm"))]
{
self.as_le_bytes() == other.as_le_bytes()
}
#[cfg(target_os = "zkvm")]
{
unsafe {
#is_eq_extern_func(self as *const #struct_name as usize, other as *const #struct_name as usize)
}
}
}
}
// Put trait implementations in a private module to avoid conflicts
mod #module_name {
use openvm_algebra_guest::IntMod;
use super::#struct_name;
impl IntMod for #struct_name {
type Repr = [u8; #limbs];
type SelfRef<'a> = &'a Self;
const MODULUS: Self::Repr = [#(#modulus_bytes),*];
const ZERO: Self = Self([0; #limbs]);
const NUM_LIMBS: usize = #limbs;
const ONE: Self = Self::from_const_u8(1);
fn from_repr(repr: Self::Repr) -> Self {
Self(repr)
}
fn from_le_bytes(bytes: &[u8]) -> Self {
let mut arr = [0u8; #limbs];
arr.copy_from_slice(bytes);
Self(arr)
}
fn from_be_bytes(bytes: &[u8]) -> Self {
let mut arr = [0u8; #limbs];
for (a, b) in arr.iter_mut().zip(bytes.iter().rev()) {
*a = *b;
}
Self(arr)
}
fn from_u8(val: u8) -> Self {
Self::from_const_u8(val)
}
fn from_u32(val: u32) -> Self {
let mut bytes = [0; #limbs];
bytes[..4].copy_from_slice(&val.to_le_bytes());
Self(bytes)
}
fn from_u64(val: u64) -> Self {
let mut bytes = [0; #limbs];
bytes[..8].copy_from_slice(&val.to_le_bytes());
Self(bytes)
}
fn as_le_bytes(&self) -> &[u8] {
&(self.0)
}
fn to_be_bytes(&self) -> [u8; #limbs] {
core::array::from_fn(|i| self.0[#limbs - 1 - i])
}
#[cfg(not(target_os = "zkvm"))]
fn modulus_biguint() -> num_bigint::BigUint {
num_bigint::BigUint::from_bytes_le(&Self::MODULUS)
}
#[cfg(not(target_os = "zkvm"))]
fn from_biguint(biguint: num_bigint::BigUint) -> Self {
Self(openvm::utils::biguint_to_limbs(&biguint))
}
#[cfg(not(target_os = "zkvm"))]
fn as_biguint(&self) -> num_bigint::BigUint {
num_bigint::BigUint::from_bytes_le(self.as_le_bytes())
}
fn neg_assign(&mut self) {
unsafe {
// SAFETY: we borrow self as &Self and as *mut Self but
// the latter will only be written to at the very end.
(#struct_name::ZERO).sub_refs_impl(self, self as *const Self as *mut Self);
}
}
fn double_assign(&mut self) {
unsafe {
// SAFETY: we borrow self as &Self and as *mut Self but
// the latter will only be written to at the very end.
self.add_refs_impl(self, self as *const Self as *mut Self);
}
}
fn square_assign(&mut self) {
unsafe {
// SAFETY: we borrow self as &Self and as *mut Self but
// the latter will only be written to at the very end.
self.mul_refs_impl(self, self as *const Self as *mut Self);
}
}
fn double(&self) -> Self {
self + self
}
fn square(&self) -> Self {
self * self
}
fn cube(&self) -> Self {
&self.square() * self
}
}
impl<'a> core::ops::AddAssign<&'a #struct_name> for #struct_name {
#[inline(always)]
fn add_assign(&mut self, other: &'a #struct_name) {
self.add_assign_impl(other);
}
}
impl core::ops::AddAssign for #struct_name {
#[inline(always)]
fn add_assign(&mut self, other: Self) {
self.add_assign_impl(&other);
}
}
impl core::ops::Add for #struct_name {
type Output = Self;
#[inline(always)]
fn add(mut self, other: Self) -> Self::Output {
self += other;
self
}
}
impl<'a> core::ops::Add<&'a #struct_name> for #struct_name {
type Output = Self;
#[inline(always)]
fn add(mut self, other: &'a #struct_name) -> Self::Output {
self += other;
self
}
}
impl<'a> core::ops::Add<&'a #struct_name> for &#struct_name {
type Output = #struct_name;
#[inline(always)]
fn add(self, other: &'a #struct_name) -> Self::Output {
let mut uninit: core::mem::MaybeUninit<#struct_name> = core::mem::MaybeUninit::uninit();
unsafe {
self.add_refs_impl(other, uninit.as_mut_ptr());
uninit.assume_init()
}
}
}
impl<'a> core::ops::SubAssign<&'a #struct_name> for #struct_name {
#[inline(always)]
fn sub_assign(&mut self, other: &'a #struct_name) {
self.sub_assign_impl(other);
}
}
impl core::ops::SubAssign for #struct_name {
#[inline(always)]
fn sub_assign(&mut self, other: Self) {
self.sub_assign_impl(&other);
}
}
impl core::ops::Sub for #struct_name {
type Output = Self;
#[inline(always)]
fn sub(mut self, other: Self) -> Self::Output {
self -= other;
self
}
}
impl<'a> core::ops::Sub<&'a #struct_name> for #struct_name {
type Output = Self;
#[inline(always)]
fn sub(mut self, other: &'a #struct_name) -> Self::Output {
self -= other;
self
}
}
impl<'a> core::ops::Sub<&'a #struct_name> for &'a #struct_name {
type Output = #struct_name;
#[inline(always)]
fn sub(self, other: &'a #struct_name) -> Self::Output {
let mut uninit: core::mem::MaybeUninit<#struct_name> = core::mem::MaybeUninit::uninit();
unsafe {
self.sub_refs_impl(other, uninit.as_mut_ptr());
uninit.assume_init()
}
}
}
impl<'a> core::ops::MulAssign<&'a #struct_name> for #struct_name {
#[inline(always)]
fn mul_assign(&mut self, other: &'a #struct_name) {
self.mul_assign_impl(other);
}
}
impl core::ops::MulAssign for #struct_name {
#[inline(always)]
fn mul_assign(&mut self, other: Self) {
self.mul_assign_impl(&other);
}
}
impl core::ops::Mul for #struct_name {
type Output = Self;
#[inline(always)]
fn mul(mut self, other: Self) -> Self::Output {
self *= other;
self
}
}
impl<'a> core::ops::Mul<&'a #struct_name> for #struct_name {
type Output = Self;
#[inline(always)]
fn mul(mut self, other: &'a #struct_name) -> Self::Output {
self *= other;
self
}
}
impl<'a> core::ops::Mul<&'a #struct_name> for &#struct_name {
type Output = #struct_name;
#[inline(always)]
fn mul(self, other: &'a #struct_name) -> Self::Output {
let mut uninit: core::mem::MaybeUninit<#struct_name> = core::mem::MaybeUninit::uninit();
unsafe {
self.mul_refs_impl(other, uninit.as_mut_ptr());
uninit.assume_init()
}
}
}
impl<'a> openvm_algebra_guest::DivAssignUnsafe<&'a #struct_name> for #struct_name {
/// Undefined behaviour when denominator is not coprime to N
#[inline(always)]
fn div_assign_unsafe(&mut self, other: &'a #struct_name) {
self.div_assign_unsafe_impl(other);
}
}
impl openvm_algebra_guest::DivAssignUnsafe for #struct_name {
/// Undefined behaviour when denominator is not coprime to N
#[inline(always)]
fn div_assign_unsafe(&mut self, other: Self) {
self.div_assign_unsafe_impl(&other);
}
}
impl openvm_algebra_guest::DivUnsafe for #struct_name {
type Output = Self;
/// Undefined behaviour when denominator is not coprime to N
#[inline(always)]
fn div_unsafe(mut self, other: Self) -> Self::Output {
self.div_assign_unsafe_impl(&other);
self
}
}
impl<'a> openvm_algebra_guest::DivUnsafe<&'a #struct_name> for #struct_name {
type Output = Self;
/// Undefined behaviour when denominator is not coprime to N
#[inline(always)]
fn div_unsafe(mut self, other: &'a #struct_name) -> Self::Output {
self.div_assign_unsafe_impl(other);
self
}
}
impl<'a> openvm_algebra_guest::DivUnsafe<&'a #struct_name> for &#struct_name {
type Output = #struct_name;
/// Undefined behaviour when denominator is not coprime to N
#[inline(always)]
fn div_unsafe(self, other: &'a #struct_name) -> Self::Output {
self.div_unsafe_refs_impl(other)
}
}
impl PartialEq for #struct_name {
#[inline(always)]
fn eq(&self, other: &Self) -> bool {
self.eq_impl(other)
}
}
impl<'a> core::iter::Sum<&'a #struct_name> for #struct_name {
fn sum<I: Iterator<Item = &'a #struct_name>>(iter: I) -> Self {
iter.fold(Self::ZERO, |acc, x| &acc + x)
}
}
impl core::iter::Sum for #struct_name {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ZERO, |acc, x| &acc + &x)
}
}
impl<'a> core::iter::Product<&'a #struct_name> for #struct_name {
fn product<I: Iterator<Item = &'a #struct_name>>(iter: I) -> Self {
iter.fold(Self::ONE, |acc, x| &acc * x)
}
}
impl core::iter::Product for #struct_name {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ONE, |acc, x| &acc * &x)
}
}
impl core::ops::Neg for #struct_name {
type Output = #struct_name;
fn neg(self) -> Self::Output {
#struct_name::ZERO - &self
}
}
impl<'a> core::ops::Neg for &'a #struct_name {
type Output = #struct_name;
fn neg(self) -> Self::Output {
#struct_name::ZERO - self
}
}
impl core::fmt::Debug for #struct_name {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "{:?}", self.as_le_bytes())
}
}
}
impl openvm_algebra_guest::Reduce for #struct_name {
fn reduce_le_bytes(bytes: &[u8]) -> Self {
let mut res = <Self as openvm_algebra_guest::IntMod>::ZERO;
// base should be 2 ^ #limbs which exceeds what Self can represent
let mut base = Self::from_le_bytes(&[255u8; #limbs]);
base += <Self as openvm_algebra_guest::IntMod>::ONE;
for chunk in bytes.chunks(#limbs).rev() {
res = res * &base + Self::from_le_bytes(chunk);
}
res
}
}
});
output.push(result);
}
TokenStream::from_iter(output)
}
struct ModuliDefine {
items: Vec<LitStr>,
}
impl Parse for ModuliDefine {
fn parse(input: ParseStream) -> syn::Result<Self> {
let items = input.parse_terminated(<LitStr as Parse>::parse, Token![,])?;
Ok(Self {
items: items.into_iter().collect(),
})
}
}
#[proc_macro]
pub fn moduli_init(input: TokenStream) -> TokenStream {
let ModuliDefine { items } = parse_macro_input!(input as ModuliDefine);
let mut externs = Vec::new();
let mut setups = Vec::new();
let mut openvm_section = Vec::new();
let mut setup_all_moduli = Vec::new();
// List of all modular limbs in one (that is, with a compile-time known size) array.
let mut two_modular_limbs_flattened_list = Vec::<u8>::new();
// List of "bars" between adjacent modular limbs sublists.
let mut limb_list_borders = vec![0usize];
let span = proc_macro::Span::call_site();
for (mod_idx, item) in items.into_iter().enumerate() {
let modulus = item.value();
println!("[init] modulus #{} = {}", mod_idx, modulus);
// TODO: chore: move all duplicated code to a function
let modulus_bytes = string_to_bytes(&modulus);
let mut limbs = modulus_bytes.len();
if limbs <= 32 {
limbs = 32;
} else if limbs <= 48 {
limbs = 48;
} else {
panic!("limbs must be at most 48");
}
let modulus_bytes = modulus_bytes
.into_iter()
.chain(vec![0u8; limbs])
.take(limbs)
.collect::<Vec<_>>();
// We need two copies of modular limbs for Fp2 setup.
let doubled_modulus = [modulus_bytes.clone(), modulus_bytes.clone()].concat();
two_modular_limbs_flattened_list.extend(doubled_modulus);
limb_list_borders.push(two_modular_limbs_flattened_list.len());
let modulus_hex = modulus_bytes
.iter()
.rev()
.map(|x| format!("{:02x}", x))
.collect::<Vec<_>>()
.join("");
let serialized_modulus =
core::iter::once(1) // 1 for "modulus"
.chain(core::iter::once(mod_idx as u8)) // mod_idx is u8 for now (can make it u32), because we don't know the order of variables in the elf
.chain((modulus_bytes.len() as u32).to_le_bytes().iter().copied())
.chain(modulus_bytes.iter().copied())
.collect::<Vec<_>>();
let serialized_name = syn::Ident::new(
&format!("OPENVM_SERIALIZED_MODULUS_{}", mod_idx),
span.into(),
);
let serialized_len = serialized_modulus.len();
let setup_function = syn::Ident::new(&format!("setup_{}", mod_idx), span.into());
openvm_section.push(quote::quote_spanned! { span.into() =>
#[cfg(target_os = "zkvm")]
#[link_section = ".openvm"]
#[no_mangle]
#[used]
static #serialized_name: [u8; #serialized_len] = [#(#serialized_modulus),*];
});
for op_type in ["add", "sub", "mul", "div"] {
let func_name = syn::Ident::new(
&format!("{}_extern_func_{}", op_type, modulus_hex),
span.into(),
);
let mut chars = op_type.chars().collect::<Vec<_>>();
chars[0] = chars[0].to_ascii_uppercase();
let local_opcode = syn::Ident::new(
&format!("{}Mod", chars.iter().collect::<String>()),
span.into(),
);
externs.push(quote::quote_spanned! { span.into() =>
#[no_mangle]
extern "C" fn #func_name(rd: usize, rs1: usize, rs2: usize) {
openvm::platform::custom_insn_r!(
opcode = ::openvm_algebra_guest::OPCODE,
funct3 = ::openvm_algebra_guest::MODULAR_ARITHMETIC_FUNCT3 as usize,
funct7 = ::openvm_algebra_guest::ModArithBaseFunct7::#local_opcode as usize + #mod_idx * (::openvm_algebra_guest::ModArithBaseFunct7::MODULAR_ARITHMETIC_MAX_KINDS as usize),
rd = In rd,
rs1 = In rs1,
rs2 = In rs2
)
}
});
}
let is_eq_extern_func =
syn::Ident::new(&format!("is_eq_extern_func_{}", modulus_hex), span.into());
externs.push(quote::quote_spanned! { span.into() =>
#[no_mangle]
extern "C" fn #is_eq_extern_func(rs1: usize, rs2: usize) -> bool {
let mut x: u32;
openvm::platform::custom_insn_r!(
opcode = ::openvm_algebra_guest::OPCODE,
funct3 = ::openvm_algebra_guest::MODULAR_ARITHMETIC_FUNCT3 as usize,
funct7 = ::openvm_algebra_guest::ModArithBaseFunct7::IsEqMod as usize + #mod_idx * (::openvm_algebra_guest::ModArithBaseFunct7::MODULAR_ARITHMETIC_MAX_KINDS as usize),
rd = Out x,
rs1 = In rs1,
rs2 = In rs2
);
x != 0
}
});
setup_all_moduli.push(quote::quote_spanned! { span.into() =>
#setup_function();
});
setups.push(quote::quote_spanned! { span.into() =>
#[allow(non_snake_case)]
pub fn #setup_function() {
#[cfg(target_os = "zkvm")]
{
let mut ptr = 0;
assert_eq!(#serialized_name[ptr], 1);
ptr += 1;
assert_eq!(#serialized_name[ptr], #mod_idx as u8);
ptr += 1;
assert_eq!(#serialized_name[ptr..ptr+4].iter().rev().fold(0, |acc, &x| acc * 256 + x as usize), #limbs);
ptr += 4;
let remaining = &#serialized_name[ptr..];
// We are going to use the numeric representation of the `rs2` register to distinguish the chip to setup.
// The transpiler will transform this instruction, based on whether `rs2` is `x0`, `x1` or `x2`, into a `SETUP_ADDSUB`, `SETUP_MULDIV` or `SETUP_ISEQ` instruction.
let mut uninit: core::mem::MaybeUninit<[u8; #limbs]> = core::mem::MaybeUninit::uninit();
openvm::platform::custom_insn_r!(
opcode = ::openvm_algebra_guest::OPCODE,
funct3 = ::openvm_algebra_guest::MODULAR_ARITHMETIC_FUNCT3,
funct7 = ::openvm_algebra_guest::ModArithBaseFunct7::SetupMod as usize
+ #mod_idx
* (::openvm_algebra_guest::ModArithBaseFunct7::MODULAR_ARITHMETIC_MAX_KINDS as usize),
rd = In uninit.as_mut_ptr(),
rs1 = In remaining.as_ptr(),
rs2 = Const "x0" // will be parsed as 0 and therefore transpiled to SETUP_ADDMOD
);
openvm::platform::custom_insn_r!(
opcode = ::openvm_algebra_guest::OPCODE,
funct3 = ::openvm_algebra_guest::MODULAR_ARITHMETIC_FUNCT3,
funct7 = ::openvm_algebra_guest::ModArithBaseFunct7::SetupMod as usize
+ #mod_idx
* (::openvm_algebra_guest::ModArithBaseFunct7::MODULAR_ARITHMETIC_MAX_KINDS as usize),
rd = In uninit.as_mut_ptr(),
rs1 = In remaining.as_ptr(),
rs2 = Const "x1" // will be parsed as 1 and therefore transpiled to SETUP_MULDIV
);
unsafe {
// This should not be x0:
let mut tmp = uninit.as_mut_ptr() as usize;
openvm::platform::custom_insn_r!(
opcode = ::openvm_algebra_guest::OPCODE,
funct3 = ::openvm_algebra_guest::MODULAR_ARITHMETIC_FUNCT3 as usize,
funct7 = ::openvm_algebra_guest::ModArithBaseFunct7::SetupMod as usize
+ #mod_idx
* (::openvm_algebra_guest::ModArithBaseFunct7::MODULAR_ARITHMETIC_MAX_KINDS as usize),
rd = InOut tmp,
rs1 = In remaining.as_ptr(),
rs2 = Const "x2" // will be parsed as 2 and therefore transpiled to SETUP_ISEQ
);
// rd = inout(reg) is necessary because this instruction will write to `rd` register
}
}
}
});
}
let total_limbs_cnt = two_modular_limbs_flattened_list.len();
let cnt_limbs_list_len = limb_list_borders.len();
TokenStream::from(quote::quote_spanned! { span.into() =>
#(#openvm_section)*
#[cfg(target_os = "zkvm")]
mod openvm_intrinsics_ffi {
#(#externs)*
}
#[allow(non_snake_case, non_upper_case_globals)]
pub mod openvm_intrinsics_meta_do_not_type_this_by_yourself {
pub const two_modular_limbs_list: [u8; #total_limbs_cnt] = [#(#two_modular_limbs_flattened_list),*];
pub const limb_list_borders: [usize; #cnt_limbs_list_len] = [#(#limb_list_borders),*];
}
#(#setups)*
pub fn setup_all_moduli() {
#(#setup_all_moduli)*
}
})
}