openvm_algebra_moduli_macros/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
#![feature(proc_macro_diagnostic)]

extern crate proc_macro;

use std::sync::atomic::AtomicUsize;

use openvm_macros_common::{string_to_bytes, MacroArgs};
use proc_macro::TokenStream;
use quote::format_ident;
use syn::{
    parse::{Parse, ParseStream},
    parse_macro_input, LitStr, Token,
};

static MOD_IDX: AtomicUsize = AtomicUsize::new(0);

/// This macro generates the code to setup the modulus for a given prime. Also it places the moduli into a special static variable to be later extracted from the ELF and used by the VM.
/// Usage:
/// ```
/// moduli_declare! {
///     Bls12381 { modulus = "0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab" },
///     Bn254 { modulus = "21888242871839275222246405745257275088696311157297823662689037894645226208583" },
/// }
/// ```
/// This creates two structs, `Bls12381` and `Bn254`, each representing the modular arithmetic class (implementing `Add`, `Sub` and so on).
#[proc_macro]
pub fn moduli_declare(input: TokenStream) -> TokenStream {
    let MacroArgs { items } = parse_macro_input!(input as MacroArgs);

    let mut output = Vec::new();

    let span = proc_macro::Span::call_site();

    for item in items {
        let struct_name = item.name.to_string();
        let struct_name = syn::Ident::new(&struct_name, span.into());
        let mut modulus: Option<String> = None;
        for param in item.params {
            match param.name.to_string().as_str() {
                "modulus" => {
                    if let syn::Expr::Lit(syn::ExprLit {
                        lit: syn::Lit::Str(value),
                        ..
                    }) = param.value
                    {
                        modulus = Some(value.value());
                    } else {
                        return syn::Error::new_spanned(param.value, "Expected a string literal")
                            .to_compile_error()
                            .into();
                    }
                }
                _ => {
                    panic!("Unknown parameter {}", param.name);
                }
            }
        }

        // Parsing the parameters is over at this point

        let mod_idx = MOD_IDX.fetch_add(1, std::sync::atomic::Ordering::SeqCst);

        let modulus = modulus.expect("modulus parameter is required");
        let modulus_bytes = string_to_bytes(&modulus);
        let mut limbs = modulus_bytes.len();
        let mut block_size = 32;

        if limbs <= 32 {
            limbs = 32;
        } else if limbs <= 48 {
            limbs = 48;
            block_size = 16;
        } else {
            panic!("limbs must be at most 48");
        }

        let modulus_bytes = modulus_bytes
            .into_iter()
            .chain(vec![0u8; limbs])
            .take(limbs)
            .collect::<Vec<_>>();

        let modulus_hex = modulus_bytes
            .iter()
            .rev()
            .map(|x| format!("{:02x}", x))
            .collect::<Vec<_>>()
            .join("");
        // TODO: can this be simplified?
        macro_rules! create_extern_func {
            ($name:ident) => {
                let $name = syn::Ident::new(
                    &format!("{}_{}", stringify!($name), modulus_hex),
                    span.into(),
                );
            };
        }
        create_extern_func!(add_extern_func);
        create_extern_func!(sub_extern_func);
        create_extern_func!(mul_extern_func);
        create_extern_func!(div_extern_func);
        create_extern_func!(is_eq_extern_func);

        let block_size = proc_macro::Literal::usize_unsuffixed(block_size);
        let block_size = syn::Lit::new(block_size.to_string().parse::<_>().unwrap());

        let module_name = format_ident!("algebra_impl_{}", mod_idx);

        let result = TokenStream::from(quote::quote_spanned! { span.into() =>
            #[derive(Clone, Eq, serde::Serialize, serde::Deserialize)]
            #[repr(C, align(#block_size))]
            pub struct #struct_name(#[serde(with = "openvm_algebra_guest::BigArray")] [u8; #limbs]);

            extern "C" {
                fn #add_extern_func(rd: usize, rs1: usize, rs2: usize);
                fn #sub_extern_func(rd: usize, rs1: usize, rs2: usize);
                fn #mul_extern_func(rd: usize, rs1: usize, rs2: usize);
                fn #div_extern_func(rd: usize, rs1: usize, rs2: usize);
                fn #is_eq_extern_func(rs1: usize, rs2: usize) -> bool;
            }

            impl #struct_name {
                #[inline(always)]
                const fn from_const_u8(val: u8) -> Self {
                    let mut bytes = [0; #limbs];
                    bytes[0] = val;
                    Self(bytes)
                }

                const fn from_const_bytes(bytes: [u8; #limbs]) -> Self {
                    Self(bytes)
                }

                #[inline(always)]
                fn add_assign_impl(&mut self, other: &Self) {
                    #[cfg(not(target_os = "zkvm"))]
                    {
                        *self = Self::from_biguint(
                            (self.as_biguint() + other.as_biguint()) % Self::modulus_biguint(),
                        );
                    }
                    #[cfg(target_os = "zkvm")]
                    {
                        unsafe {
                            #add_extern_func(
                                self as *mut Self as usize,
                                self as *const Self as usize,
                                other as *const Self as usize,
                            );
                        }
                    }
                }

                #[inline(always)]
                fn sub_assign_impl(&mut self, other: &Self) {
                    #[cfg(not(target_os = "zkvm"))]
                    {
                        let modulus = Self::modulus_biguint();
                        *self = Self::from_biguint(
                            (self.as_biguint() + modulus.clone() - other.as_biguint()) % modulus,
                        );
                    }
                    #[cfg(target_os = "zkvm")]
                    {
                        unsafe {
                            #sub_extern_func(
                                self as *mut Self as usize,
                                self as *const Self as usize,
                                other as *const Self as usize,
                            );
                        }
                    }
                }

                #[inline(always)]
                fn mul_assign_impl(&mut self, other: &Self) {
                    #[cfg(not(target_os = "zkvm"))]
                    {
                        *self = Self::from_biguint(
                            (self.as_biguint() * other.as_biguint()) % Self::modulus_biguint(),
                        );
                    }
                    #[cfg(target_os = "zkvm")]
                    {
                        unsafe {
                            #mul_extern_func(
                                self as *mut Self as usize,
                                self as *const Self as usize,
                                other as *const Self as usize,
                            );
                        }
                    }
                }

                #[inline(always)]
                fn div_assign_unsafe_impl(&mut self, other: &Self) {
                    #[cfg(not(target_os = "zkvm"))]
                    {
                        let modulus = Self::modulus_biguint();
                        let inv = other.as_biguint().modinv(&modulus).unwrap();
                        *self = Self::from_biguint((self.as_biguint() * inv) % modulus);
                    }
                    #[cfg(target_os = "zkvm")]
                    {
                        unsafe {
                            #div_extern_func(
                                self as *mut Self as usize,
                                self as *const Self as usize,
                                other as *const Self as usize,
                            );
                        }
                    }
                }

                /// SAFETY: `dst_ptr` must be a raw pointer to `&mut Self`.
                /// It will be written to only at the very end .
                #[inline(always)]
                unsafe fn add_refs_impl(&self, other: &Self, dst_ptr: *mut Self) {
                    #[cfg(not(target_os = "zkvm"))]
                    {
                        let mut res = self.clone();
                        res += other;
                        // BEWARE order of operations: when dst_ptr = other as pointers
                        let dst = unsafe { &mut *dst_ptr };
                        *dst = res;
                    }
                    #[cfg(target_os = "zkvm")]
                    {
                        unsafe {
                            #add_extern_func(
                                dst_ptr as usize,
                                self as *const #struct_name as usize,
                                other as *const #struct_name as usize,
                            );
                        }
                    }
                }

                /// SAFETY: `dst_ptr` must be a raw pointer to `&mut Self`.
                /// It will be written to only at the very end .
                #[inline(always)]
                unsafe fn sub_refs_impl(&self, other: &Self, dst_ptr: *mut Self) {
                    #[cfg(not(target_os = "zkvm"))]
                    {
                        let mut res = self.clone();
                        res -= other;
                        // BEWARE order of operations: when dst_ptr = other as pointers
                        let dst = unsafe { &mut *dst_ptr };
                        *dst = res;
                    }
                    #[cfg(target_os = "zkvm")]
                    {
                        unsafe {
                            #sub_extern_func(
                                dst_ptr as usize,
                                self as *const #struct_name as usize,
                                other as *const #struct_name as usize,
                            );
                        }
                    }
                }

                /// SAFETY: `dst_ptr` must be a raw pointer to `&mut Self`.
                /// It will be written to only at the very end .
                #[inline(always)]
                unsafe fn mul_refs_impl(&self, other: &Self, dst_ptr: *mut Self) {
                    #[cfg(not(target_os = "zkvm"))]
                    {
                        let mut res = self.clone();
                        res *= other;
                        // BEWARE order of operations: when dst_ptr = other as pointers
                        let dst = unsafe { &mut *dst_ptr };
                        *dst = res;
                    }
                    #[cfg(target_os = "zkvm")]
                    {
                        unsafe {
                            #mul_extern_func(
                                dst_ptr as usize,
                                self as *const #struct_name as usize,
                                other as *const #struct_name as usize,
                            );
                        }
                    }
                }

                #[inline(always)]
                fn div_unsafe_refs_impl(&self, other: &Self) -> Self {
                    #[cfg(not(target_os = "zkvm"))]
                    {
                        let modulus = Self::modulus_biguint();
                        let inv = other.as_biguint().modinv(&modulus).unwrap();
                        Self::from_biguint((self.as_biguint() * inv) % modulus)
                    }
                    #[cfg(target_os = "zkvm")]
                    {
                        let mut uninit: core::mem::MaybeUninit<#struct_name> = core::mem::MaybeUninit::uninit();
                        unsafe {
                            #div_extern_func(
                                uninit.as_mut_ptr() as usize,
                                self as *const #struct_name as usize,
                                other as *const #struct_name as usize,
                            );
                        }
                        unsafe { uninit.assume_init() }
                    }
                }

                #[inline(always)]
                fn eq_impl(&self, other: &Self) -> bool {
                    #[cfg(not(target_os = "zkvm"))]
                    {
                        self.as_le_bytes() == other.as_le_bytes()
                    }
                    #[cfg(target_os = "zkvm")]
                    {
                        unsafe {
                            #is_eq_extern_func(self as *const #struct_name as usize, other as *const #struct_name as usize)
                        }
                    }
                }
            }

            // Put trait implementations in a private module to avoid conflicts
            mod #module_name {
                use openvm_algebra_guest::IntMod;

                use super::#struct_name;

                impl IntMod for #struct_name {
                    type Repr = [u8; #limbs];
                    type SelfRef<'a> = &'a Self;

                    const MODULUS: Self::Repr = [#(#modulus_bytes),*];

                    const ZERO: Self = Self([0; #limbs]);

                    const NUM_LIMBS: usize = #limbs;

                    const ONE: Self = Self::from_const_u8(1);

                    fn from_repr(repr: Self::Repr) -> Self {
                        Self(repr)
                    }

                    fn from_le_bytes(bytes: &[u8]) -> Self {
                        let mut arr = [0u8; #limbs];
                        arr.copy_from_slice(bytes);
                        Self(arr)
                    }

                    fn from_be_bytes(bytes: &[u8]) -> Self {
                        let mut arr = [0u8; #limbs];
                        for (a, b) in arr.iter_mut().zip(bytes.iter().rev()) {
                            *a = *b;
                        }
                        Self(arr)
                    }

                    fn from_u8(val: u8) -> Self {
                        Self::from_const_u8(val)
                    }

                    fn from_u32(val: u32) -> Self {
                        let mut bytes = [0; #limbs];
                        bytes[..4].copy_from_slice(&val.to_le_bytes());
                        Self(bytes)
                    }

                    fn from_u64(val: u64) -> Self {
                        let mut bytes = [0; #limbs];
                        bytes[..8].copy_from_slice(&val.to_le_bytes());
                        Self(bytes)
                    }

                    fn as_le_bytes(&self) -> &[u8] {
                        &(self.0)
                    }

                    fn to_be_bytes(&self) -> [u8; #limbs] {
                        core::array::from_fn(|i| self.0[#limbs - 1 - i])
                    }

                    #[cfg(not(target_os = "zkvm"))]
                    fn modulus_biguint() -> num_bigint::BigUint {
                        num_bigint::BigUint::from_bytes_le(&Self::MODULUS)
                    }

                    #[cfg(not(target_os = "zkvm"))]
                    fn from_biguint(biguint: num_bigint::BigUint) -> Self {
                        Self(openvm::utils::biguint_to_limbs(&biguint))
                    }

                    #[cfg(not(target_os = "zkvm"))]
                    fn as_biguint(&self) -> num_bigint::BigUint {
                        num_bigint::BigUint::from_bytes_le(self.as_le_bytes())
                    }

                    fn neg_assign(&mut self) {
                        unsafe {
                            // SAFETY: we borrow self as &Self and as *mut Self but
                            // the latter will only be written to at the very end.
                            (#struct_name::ZERO).sub_refs_impl(self, self as *const Self as *mut Self);
                        }
                    }

                    fn double_assign(&mut self) {
                        unsafe {
                            // SAFETY: we borrow self as &Self and as *mut Self but
                            // the latter will only be written to at the very end.
                            self.add_refs_impl(self, self as *const Self as *mut Self);
                        }
                    }

                    fn square_assign(&mut self) {
                        unsafe {
                            // SAFETY: we borrow self as &Self and as *mut Self but
                            // the latter will only be written to at the very end.
                            self.mul_refs_impl(self, self as *const Self as *mut Self);
                        }
                    }

                    fn double(&self) -> Self {
                        self + self
                    }

                    fn square(&self) -> Self {
                        self * self
                    }

                    fn cube(&self) -> Self {
                        &self.square() * self
                    }
                }

                impl<'a> core::ops::AddAssign<&'a #struct_name> for #struct_name {
                    #[inline(always)]
                    fn add_assign(&mut self, other: &'a #struct_name) {
                        self.add_assign_impl(other);
                    }
                }

                impl core::ops::AddAssign for #struct_name {
                    #[inline(always)]
                    fn add_assign(&mut self, other: Self) {
                        self.add_assign_impl(&other);
                    }
                }

                impl core::ops::Add for #struct_name {
                    type Output = Self;
                    #[inline(always)]
                    fn add(mut self, other: Self) -> Self::Output {
                        self += other;
                        self
                    }
                }

                impl<'a> core::ops::Add<&'a #struct_name> for #struct_name {
                    type Output = Self;
                    #[inline(always)]
                    fn add(mut self, other: &'a #struct_name) -> Self::Output {
                        self += other;
                        self
                    }
                }

                impl<'a> core::ops::Add<&'a #struct_name> for &#struct_name {
                    type Output = #struct_name;
                    #[inline(always)]
                    fn add(self, other: &'a #struct_name) -> Self::Output {
                        let mut uninit: core::mem::MaybeUninit<#struct_name> = core::mem::MaybeUninit::uninit();
                        unsafe {
                            self.add_refs_impl(other, uninit.as_mut_ptr());
                            uninit.assume_init()
                        }
                    }
                }

                impl<'a> core::ops::SubAssign<&'a #struct_name> for #struct_name {
                    #[inline(always)]
                    fn sub_assign(&mut self, other: &'a #struct_name) {
                        self.sub_assign_impl(other);
                    }
                }

                impl core::ops::SubAssign for #struct_name {
                    #[inline(always)]
                    fn sub_assign(&mut self, other: Self) {
                        self.sub_assign_impl(&other);
                    }
                }

                impl core::ops::Sub for #struct_name {
                    type Output = Self;
                    #[inline(always)]
                    fn sub(mut self, other: Self) -> Self::Output {
                        self -= other;
                        self
                    }
                }

                impl<'a> core::ops::Sub<&'a #struct_name> for #struct_name {
                    type Output = Self;
                    #[inline(always)]
                    fn sub(mut self, other: &'a #struct_name) -> Self::Output {
                        self -= other;
                        self
                    }
                }

                impl<'a> core::ops::Sub<&'a #struct_name> for &'a #struct_name {
                    type Output = #struct_name;
                    #[inline(always)]
                    fn sub(self, other: &'a #struct_name) -> Self::Output {
                        let mut uninit: core::mem::MaybeUninit<#struct_name> = core::mem::MaybeUninit::uninit();
                        unsafe {
                            self.sub_refs_impl(other, uninit.as_mut_ptr());
                            uninit.assume_init()
                        }
                    }
                }

                impl<'a> core::ops::MulAssign<&'a #struct_name> for #struct_name {
                    #[inline(always)]
                    fn mul_assign(&mut self, other: &'a #struct_name) {
                        self.mul_assign_impl(other);
                    }
                }

                impl core::ops::MulAssign for #struct_name {
                    #[inline(always)]
                    fn mul_assign(&mut self, other: Self) {
                        self.mul_assign_impl(&other);
                    }
                }

                impl core::ops::Mul for #struct_name {
                    type Output = Self;
                    #[inline(always)]
                    fn mul(mut self, other: Self) -> Self::Output {
                        self *= other;
                        self
                    }
                }

                impl<'a> core::ops::Mul<&'a #struct_name> for #struct_name {
                    type Output = Self;
                    #[inline(always)]
                    fn mul(mut self, other: &'a #struct_name) -> Self::Output {
                        self *= other;
                        self
                    }
                }

                impl<'a> core::ops::Mul<&'a #struct_name> for &#struct_name {
                    type Output = #struct_name;
                    #[inline(always)]
                    fn mul(self, other: &'a #struct_name) -> Self::Output {
                        let mut uninit: core::mem::MaybeUninit<#struct_name> = core::mem::MaybeUninit::uninit();
                        unsafe {
                            self.mul_refs_impl(other, uninit.as_mut_ptr());
                            uninit.assume_init()
                        }
                    }
                }

                impl<'a> openvm_algebra_guest::DivAssignUnsafe<&'a #struct_name> for #struct_name {
                    /// Undefined behaviour when denominator is not coprime to N
                    #[inline(always)]
                    fn div_assign_unsafe(&mut self, other: &'a #struct_name) {
                        self.div_assign_unsafe_impl(other);
                    }
                }

                impl openvm_algebra_guest::DivAssignUnsafe for #struct_name {
                    /// Undefined behaviour when denominator is not coprime to N
                    #[inline(always)]
                    fn div_assign_unsafe(&mut self, other: Self) {
                        self.div_assign_unsafe_impl(&other);
                    }
                }

                impl openvm_algebra_guest::DivUnsafe for #struct_name {
                    type Output = Self;
                    /// Undefined behaviour when denominator is not coprime to N
                    #[inline(always)]
                    fn div_unsafe(mut self, other: Self) -> Self::Output {
                        self.div_assign_unsafe_impl(&other);
                        self
                    }
                }

                impl<'a> openvm_algebra_guest::DivUnsafe<&'a #struct_name> for #struct_name {
                    type Output = Self;
                    /// Undefined behaviour when denominator is not coprime to N
                    #[inline(always)]
                    fn div_unsafe(mut self, other: &'a #struct_name) -> Self::Output {
                        self.div_assign_unsafe_impl(other);
                        self
                    }
                }

                impl<'a> openvm_algebra_guest::DivUnsafe<&'a #struct_name> for &#struct_name {
                    type Output = #struct_name;
                    /// Undefined behaviour when denominator is not coprime to N
                    #[inline(always)]
                    fn div_unsafe(self, other: &'a #struct_name) -> Self::Output {
                        self.div_unsafe_refs_impl(other)
                    }
                }

                impl PartialEq for #struct_name {
                    #[inline(always)]
                    fn eq(&self, other: &Self) -> bool {
                        self.eq_impl(other)
                    }
                }

                impl<'a> core::iter::Sum<&'a #struct_name> for #struct_name {
                    fn sum<I: Iterator<Item = &'a #struct_name>>(iter: I) -> Self {
                        iter.fold(Self::ZERO, |acc, x| &acc + x)
                    }
                }

                impl core::iter::Sum for #struct_name {
                    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
                        iter.fold(Self::ZERO, |acc, x| &acc + &x)
                    }
                }

                impl<'a> core::iter::Product<&'a #struct_name> for #struct_name {
                    fn product<I: Iterator<Item = &'a #struct_name>>(iter: I) -> Self {
                        iter.fold(Self::ONE, |acc, x| &acc * x)
                    }
                }

                impl core::iter::Product for #struct_name {
                    fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
                        iter.fold(Self::ONE, |acc, x| &acc * &x)
                    }
                }

                impl core::ops::Neg for #struct_name {
                    type Output = #struct_name;
                    fn neg(self) -> Self::Output {
                        #struct_name::ZERO - &self
                    }
                }

                impl<'a> core::ops::Neg for &'a #struct_name {
                    type Output = #struct_name;
                    fn neg(self) -> Self::Output {
                        #struct_name::ZERO - self
                    }
                }

                impl core::fmt::Debug for #struct_name {
                    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
                        write!(f, "{:?}", self.as_le_bytes())
                    }
                }
            }

            impl openvm_algebra_guest::Reduce for #struct_name {
                fn reduce_le_bytes(bytes: &[u8]) -> Self {
                    let mut res = <Self as openvm_algebra_guest::IntMod>::ZERO;
                    // base should be 2 ^ #limbs which exceeds what Self can represent
                    let mut base = Self::from_le_bytes(&[255u8; #limbs]);
                    base += <Self as openvm_algebra_guest::IntMod>::ONE;
                    for chunk in bytes.chunks(#limbs).rev() {
                        res = res * &base + Self::from_le_bytes(chunk);
                    }
                    res
                }
            }
        });

        output.push(result);
    }

    TokenStream::from_iter(output)
}

struct ModuliDefine {
    items: Vec<LitStr>,
}

impl Parse for ModuliDefine {
    fn parse(input: ParseStream) -> syn::Result<Self> {
        let items = input.parse_terminated(<LitStr as Parse>::parse, Token![,])?;
        Ok(Self {
            items: items.into_iter().collect(),
        })
    }
}

#[proc_macro]
pub fn moduli_init(input: TokenStream) -> TokenStream {
    let ModuliDefine { items } = parse_macro_input!(input as ModuliDefine);

    let mut externs = Vec::new();
    let mut setups = Vec::new();
    let mut openvm_section = Vec::new();
    let mut setup_all_moduli = Vec::new();

    // List of all modular limbs in one (that is, with a compile-time known size) array.
    let mut two_modular_limbs_flattened_list = Vec::<u8>::new();
    // List of "bars" between adjacent modular limbs sublists.
    let mut limb_list_borders = vec![0usize];

    let span = proc_macro::Span::call_site();

    for (mod_idx, item) in items.into_iter().enumerate() {
        let modulus = item.value();
        println!("[init] modulus #{} = {}", mod_idx, modulus);

        // TODO: chore: move all duplicated code to a function
        let modulus_bytes = string_to_bytes(&modulus);
        let mut limbs = modulus_bytes.len();

        if limbs <= 32 {
            limbs = 32;
        } else if limbs <= 48 {
            limbs = 48;
        } else {
            panic!("limbs must be at most 48");
        }

        let modulus_bytes = modulus_bytes
            .into_iter()
            .chain(vec![0u8; limbs])
            .take(limbs)
            .collect::<Vec<_>>();

        // We need two copies of modular limbs for Fp2 setup.
        let doubled_modulus = [modulus_bytes.clone(), modulus_bytes.clone()].concat();
        two_modular_limbs_flattened_list.extend(doubled_modulus);
        limb_list_borders.push(two_modular_limbs_flattened_list.len());

        let modulus_hex = modulus_bytes
            .iter()
            .rev()
            .map(|x| format!("{:02x}", x))
            .collect::<Vec<_>>()
            .join("");

        let serialized_modulus =
            core::iter::once(1) // 1 for "modulus"
                .chain(core::iter::once(mod_idx as u8)) // mod_idx is u8 for now (can make it u32), because we don't know the order of variables in the elf
                .chain((modulus_bytes.len() as u32).to_le_bytes().iter().copied())
                .chain(modulus_bytes.iter().copied())
                .collect::<Vec<_>>();
        let serialized_name = syn::Ident::new(
            &format!("OPENVM_SERIALIZED_MODULUS_{}", mod_idx),
            span.into(),
        );
        let serialized_len = serialized_modulus.len();
        let setup_function = syn::Ident::new(&format!("setup_{}", mod_idx), span.into());

        openvm_section.push(quote::quote_spanned! { span.into() =>
            #[cfg(target_os = "zkvm")]
            #[link_section = ".openvm"]
            #[no_mangle]
            #[used]
            static #serialized_name: [u8; #serialized_len] = [#(#serialized_modulus),*];
        });

        for op_type in ["add", "sub", "mul", "div"] {
            let func_name = syn::Ident::new(
                &format!("{}_extern_func_{}", op_type, modulus_hex),
                span.into(),
            );
            let mut chars = op_type.chars().collect::<Vec<_>>();
            chars[0] = chars[0].to_ascii_uppercase();
            let local_opcode = syn::Ident::new(
                &format!("{}Mod", chars.iter().collect::<String>()),
                span.into(),
            );
            externs.push(quote::quote_spanned! { span.into() =>
                #[no_mangle]
                extern "C" fn #func_name(rd: usize, rs1: usize, rs2: usize) {
                    openvm::platform::custom_insn_r!(
                        opcode = ::openvm_algebra_guest::OPCODE,
                        funct3 = ::openvm_algebra_guest::MODULAR_ARITHMETIC_FUNCT3 as usize,
                        funct7 = ::openvm_algebra_guest::ModArithBaseFunct7::#local_opcode as usize + #mod_idx * (::openvm_algebra_guest::ModArithBaseFunct7::MODULAR_ARITHMETIC_MAX_KINDS as usize),
                        rd = In rd,
                        rs1 = In rs1,
                        rs2 = In rs2
                    )
                }
            });
        }

        let is_eq_extern_func =
            syn::Ident::new(&format!("is_eq_extern_func_{}", modulus_hex), span.into());
        externs.push(quote::quote_spanned! { span.into() =>
            #[no_mangle]
            extern "C" fn #is_eq_extern_func(rs1: usize, rs2: usize) -> bool {
                let mut x: u32;
                openvm::platform::custom_insn_r!(
                    opcode = ::openvm_algebra_guest::OPCODE,
                    funct3 = ::openvm_algebra_guest::MODULAR_ARITHMETIC_FUNCT3 as usize,
                    funct7 = ::openvm_algebra_guest::ModArithBaseFunct7::IsEqMod as usize + #mod_idx * (::openvm_algebra_guest::ModArithBaseFunct7::MODULAR_ARITHMETIC_MAX_KINDS as usize),
                    rd = Out x,
                    rs1 = In rs1,
                    rs2 = In rs2
                );
                x != 0
            }
        });

        setup_all_moduli.push(quote::quote_spanned! { span.into() =>
            #setup_function();
        });

        setups.push(quote::quote_spanned! { span.into() =>
            #[allow(non_snake_case)]
            pub fn #setup_function() {
                #[cfg(target_os = "zkvm")]
                {
                    let mut ptr = 0;
                    assert_eq!(#serialized_name[ptr], 1);
                    ptr += 1;
                    assert_eq!(#serialized_name[ptr], #mod_idx as u8);
                    ptr += 1;
                    assert_eq!(#serialized_name[ptr..ptr+4].iter().rev().fold(0, |acc, &x| acc * 256 + x as usize), #limbs);
                    ptr += 4;
                    let remaining = &#serialized_name[ptr..];

                    // We are going to use the numeric representation of the `rs2` register to distinguish the chip to setup.
                    // The transpiler will transform this instruction, based on whether `rs2` is `x0`, `x1` or `x2`, into a `SETUP_ADDSUB`, `SETUP_MULDIV` or `SETUP_ISEQ` instruction.
                    let mut uninit: core::mem::MaybeUninit<[u8; #limbs]> = core::mem::MaybeUninit::uninit();
                    openvm::platform::custom_insn_r!(
                        opcode = ::openvm_algebra_guest::OPCODE,
                        funct3 = ::openvm_algebra_guest::MODULAR_ARITHMETIC_FUNCT3,
                        funct7 = ::openvm_algebra_guest::ModArithBaseFunct7::SetupMod as usize
                            + #mod_idx
                                * (::openvm_algebra_guest::ModArithBaseFunct7::MODULAR_ARITHMETIC_MAX_KINDS as usize),
                        rd = In uninit.as_mut_ptr(),
                        rs1 = In remaining.as_ptr(),
                        rs2 = Const "x0" // will be parsed as 0 and therefore transpiled to SETUP_ADDMOD
                    );
                    openvm::platform::custom_insn_r!(
                        opcode = ::openvm_algebra_guest::OPCODE,
                        funct3 = ::openvm_algebra_guest::MODULAR_ARITHMETIC_FUNCT3,
                        funct7 = ::openvm_algebra_guest::ModArithBaseFunct7::SetupMod as usize
                            + #mod_idx
                                * (::openvm_algebra_guest::ModArithBaseFunct7::MODULAR_ARITHMETIC_MAX_KINDS as usize),
                        rd = In uninit.as_mut_ptr(),
                        rs1 = In remaining.as_ptr(),
                        rs2 = Const "x1" // will be parsed as 1 and therefore transpiled to SETUP_MULDIV
                    );
                    unsafe {
                        // This should not be x0:
                        let mut tmp = uninit.as_mut_ptr() as usize;
                        openvm::platform::custom_insn_r!(
                            opcode = ::openvm_algebra_guest::OPCODE,
                            funct3 = ::openvm_algebra_guest::MODULAR_ARITHMETIC_FUNCT3 as usize,
                            funct7 = ::openvm_algebra_guest::ModArithBaseFunct7::SetupMod as usize
                                + #mod_idx
                                    * (::openvm_algebra_guest::ModArithBaseFunct7::MODULAR_ARITHMETIC_MAX_KINDS as usize),
                            rd = InOut tmp,
                            rs1 = In remaining.as_ptr(),
                            rs2 = Const "x2" // will be parsed as 2 and therefore transpiled to SETUP_ISEQ
                        );
                        // rd = inout(reg) is necessary because this instruction will write to `rd` register
                    }
                }
            }
        });
    }

    let total_limbs_cnt = two_modular_limbs_flattened_list.len();
    let cnt_limbs_list_len = limb_list_borders.len();
    TokenStream::from(quote::quote_spanned! { span.into() =>
        #(#openvm_section)*
        #[cfg(target_os = "zkvm")]
        mod openvm_intrinsics_ffi {
            #(#externs)*
        }
        #[allow(non_snake_case, non_upper_case_globals)]
        pub mod openvm_intrinsics_meta_do_not_type_this_by_yourself {
            pub const two_modular_limbs_list: [u8; #total_limbs_cnt] = [#(#two_modular_limbs_flattened_list),*];
            pub const limb_list_borders: [usize; #cnt_limbs_list_len] = [#(#limb_list_borders),*];
        }
        #(#setups)*
        pub fn setup_all_moduli() {
            #(#setup_all_moduli)*
        }
    })
}