halo2_axiom/poly/domain.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
//! Contains utilities for performing polynomial arithmetic over an evaluation
//! domain that is of a suitable size for the application.
use crate::{
arithmetic::{best_fft, parallelize},
fft::recursive::FFTData,
plonk::Assigned,
};
use super::{Coeff, ExtendedLagrangeCoeff, LagrangeCoeff, Polynomial, Rotation};
use group::ff::{BatchInvert, Field, WithSmallOrderMulGroup};
use std::{collections::HashMap, marker::PhantomData};
/// This structure contains precomputed constants and other details needed for
/// performing operations on an evaluation domain of size $2^k$ and an extended
/// domain of size $2^{k} * j$ with $j \neq 0$.
#[derive(Clone, Debug)]
pub struct EvaluationDomain<F: Field> {
n: u64,
k: u32,
extended_k: u32,
omega: F,
omega_inv: F,
extended_omega: F,
extended_omega_inv: F,
g_coset: F,
g_coset_inv: F,
quotient_poly_degree: u64,
ifft_divisor: F,
extended_ifft_divisor: F,
t_evaluations: Vec<F>,
barycentric_weight: F,
// Recursive stuff
fft_data: HashMap<usize, FFTData<F>>,
}
impl<F: WithSmallOrderMulGroup<3>> EvaluationDomain<F> {
/// This constructs a new evaluation domain object based on the provided
/// values $j, k$.
pub fn new(j: u32, k: u32) -> Self {
// quotient_poly_degree * params.n - 1 is the degree of the quotient polynomial
let quotient_poly_degree = (j - 1) as u64;
// n = 2^k
let n = 1u64 << k;
// We need to work within an extended domain, not params.k but params.k + i
// for some integer i such that 2^(params.k + i) is sufficiently large to
// describe the quotient polynomial.
let mut extended_k = k;
while (1 << extended_k) < (n * quotient_poly_degree) {
extended_k += 1;
}
#[cfg(feature = "profile")]
println!("k: {}, extended_k: {}", k, extended_k);
// ensure extended_k <= S
assert!(extended_k <= F::S);
let mut extended_omega = F::ROOT_OF_UNITY;
// Get extended_omega, the 2^{extended_k}'th root of unity
// The loop computes extended_omega = omega^{2 ^ (S - extended_k)}
// Notice that extended_omega ^ {2 ^ extended_k} = omega ^ {2^S} = 1.
for _ in extended_k..F::S {
extended_omega = extended_omega.square();
}
let extended_omega = extended_omega;
// Get omega, the 2^{k}'th root of unity (i.e. n'th root of unity)
// The loop computes omega = extended_omega ^ {2 ^ (extended_k - k)}
// = (omega^{2 ^ (S - extended_k)}) ^ {2 ^ (extended_k - k)}
// = omega ^ {2 ^ (S - k)}.
// Notice that omega ^ {2^k} = omega ^ {2^S} = 1.
let mut omegas = Vec::with_capacity((extended_k - k + 1) as usize);
let mut omega = extended_omega;
omegas.push(omega);
for _ in k..extended_k {
omega = omega.square();
omegas.push(omega);
}
let omega = omega;
omegas.reverse();
let mut omegas_inv = omegas.clone(); // Inversion computed later
// We use zeta here because we know it generates a coset, and it's available
// already.
// The coset evaluation domain is:
// zeta {1, extended_omega, extended_omega^2, ..., extended_omega^{(2^extended_k) - 1}}
let g_coset = F::ZETA;
let g_coset_inv = g_coset.square();
let mut t_evaluations = Vec::with_capacity(1 << (extended_k - k));
{
// Compute the evaluations of t(X) = X^n - 1 in the coset evaluation domain.
// We don't have to compute all of them, because it will repeat.
let orig = F::ZETA.pow_vartime([n]);
let step = extended_omega.pow_vartime([n]);
let mut cur = orig;
loop {
t_evaluations.push(cur);
cur *= &step;
if cur == orig {
break;
}
}
assert_eq!(t_evaluations.len(), 1 << (extended_k - k));
// Subtract 1 from each to give us t_evaluations[i] = t(zeta * extended_omega^i)
for coeff in &mut t_evaluations {
*coeff -= &F::ONE;
}
// Invert, because we're dividing by this polynomial.
// We invert in a batch, below.
}
let mut ifft_divisor = F::from(1 << k); // Inversion computed later
let mut extended_ifft_divisor = F::from(1 << extended_k); // Inversion computed later
// The barycentric weight of 1 over the evaluation domain
// 1 / \prod_{i != 0} (1 - omega^i)
let mut barycentric_weight = F::from(n); // Inversion computed later
// Compute batch inversion
t_evaluations
.iter_mut()
.chain(Some(&mut ifft_divisor))
.chain(Some(&mut extended_ifft_divisor))
.chain(Some(&mut barycentric_weight))
.chain(&mut omegas_inv)
.batch_invert();
let omega_inv = omegas_inv[0];
let extended_omega_inv = *omegas_inv.last().unwrap();
let mut fft_data = HashMap::new();
for (i, (omega, omega_inv)) in omegas.into_iter().zip(omegas_inv).enumerate() {
let intermediate_k = k as usize + i;
let len = 1usize << intermediate_k;
fft_data.insert(len, FFTData::<F>::new(len, omega, omega_inv));
}
EvaluationDomain {
n,
k,
extended_k,
omega,
omega_inv,
extended_omega,
extended_omega_inv,
g_coset,
g_coset_inv,
quotient_poly_degree,
ifft_divisor,
extended_ifft_divisor,
t_evaluations,
barycentric_weight,
fft_data,
}
}
/// Obtains a polynomial in Lagrange form when given a vector of Lagrange
/// coefficients of size `n`; panics if the provided vector is the wrong
/// length.
pub fn lagrange_from_vec(&self, values: Vec<F>) -> Polynomial<F, LagrangeCoeff> {
assert_eq!(values.len(), self.n as usize);
Polynomial {
values,
_marker: PhantomData,
}
}
pub fn lagrange_assigned_from_vec(
&self,
values: Vec<Assigned<F>>,
) -> Polynomial<Assigned<F>, LagrangeCoeff> {
assert_eq!(values.len(), self.n as usize);
Polynomial {
values,
_marker: PhantomData,
}
}
/// Obtains a polynomial in coefficient form when given a vector of
/// coefficients of size `n`; panics if the provided vector is the wrong
/// length.
pub fn coeff_from_vec(&self, values: Vec<F>) -> Polynomial<F, Coeff> {
assert_eq!(values.len(), self.n as usize);
Polynomial {
values,
_marker: PhantomData,
}
}
/// Obtains a polynomial in ExtendedLagrange form when given a vector of
/// Lagrange polynomials with total size `extended_n`; panics if the
/// provided vector is the wrong length.
pub fn lagrange_vec_to_extended(
&self,
values: Vec<Polynomial<F, LagrangeCoeff>>,
) -> Polynomial<F, ExtendedLagrangeCoeff> {
assert_eq!(values.len(), self.extended_len() >> self.k);
assert_eq!(values[0].len(), self.n as usize);
// transpose the values in parallel
let mut transposed = vec![vec![F::ZERO; values.len()]; self.n as usize];
values.into_iter().enumerate().for_each(|(i, p)| {
parallelize(&mut transposed, |transposed, start| {
for (transposed, p) in transposed.iter_mut().zip(p.values[start..].iter()) {
transposed[i] = *p;
}
});
});
Polynomial {
values: transposed.into_iter().flatten().collect(),
_marker: PhantomData,
}
}
/// Obtains a polynomial in ExtendedLagrange form when given a vector of
/// Lagrange polynomials with total size `extended_n`; panics if the
/// provided vector is the wrong length.
pub fn extended_from_lagrange_vec(
&self,
values: Vec<Polynomial<F, LagrangeCoeff>>,
) -> Polynomial<F, ExtendedLagrangeCoeff> {
assert_eq!(values.len(), self.extended_len() >> self.k);
assert_eq!(values[0].len(), self.n as usize);
// transpose the values in parallel
let mut transposed = vec![vec![F::ZERO; values.len()]; self.n as usize];
values.into_iter().enumerate().for_each(|(i, p)| {
parallelize(&mut transposed, |transposed, start| {
for (transposed, p) in transposed.iter_mut().zip(p.values[start..].iter()) {
transposed[i] = *p;
}
});
});
Polynomial {
values: transposed.into_iter().flatten().collect(),
_marker: PhantomData,
}
}
/// Returns an empty (zero) polynomial in the coefficient basis
pub fn empty_coeff(&self) -> Polynomial<F, Coeff> {
Polynomial {
values: vec![F::ZERO; self.n as usize],
_marker: PhantomData,
}
}
/// Returns an empty (zero) polynomial in the Lagrange coefficient basis
pub fn empty_lagrange(&self) -> Polynomial<F, LagrangeCoeff> {
Polynomial {
values: vec![F::ZERO; self.n as usize],
_marker: PhantomData,
}
}
/// Returns an empty (zero) polynomial in the Lagrange coefficient basis, with
/// deferred inversions.
pub(crate) fn empty_lagrange_assigned(&self) -> Polynomial<Assigned<F>, LagrangeCoeff> {
Polynomial {
values: vec![F::ZERO.into(); self.n as usize],
_marker: PhantomData,
}
}
/// Returns a constant polynomial in the Lagrange coefficient basis
pub fn constant_lagrange(&self, scalar: F) -> Polynomial<F, LagrangeCoeff> {
Polynomial {
values: vec![scalar; self.n as usize],
_marker: PhantomData,
}
}
/// Returns an empty (zero) polynomial in the extended Lagrange coefficient
/// basis
pub fn empty_extended(&self) -> Polynomial<F, ExtendedLagrangeCoeff> {
Polynomial {
values: vec![F::ZERO; self.extended_len()],
_marker: PhantomData,
}
}
/// Returns a constant polynomial in the extended Lagrange coefficient
/// basis
pub fn constant_extended(&self, scalar: F) -> Polynomial<F, ExtendedLagrangeCoeff> {
Polynomial {
values: vec![scalar; self.extended_len()],
_marker: PhantomData,
}
}
/// This takes us from an n-length vector into the coefficient form.
///
/// This function will panic if the provided vector is not the correct
/// length.
pub fn lagrange_to_coeff(&self, mut a: Polynomial<F, LagrangeCoeff>) -> Polynomial<F, Coeff> {
assert_eq!(a.values.len(), 1 << self.k);
// Perform inverse FFT to obtain the polynomial in coefficient form
self.ifft(&mut a.values, self.omega_inv, self.k, self.ifft_divisor);
Polynomial {
values: a.values,
_marker: PhantomData,
}
}
/// This takes us from an n-length coefficient vector into a coset of the extended
/// evaluation domain, rotating by `rotation` if desired.
pub fn coeff_to_extended(
&self,
p: &Polynomial<F, Coeff>,
) -> Polynomial<F, ExtendedLagrangeCoeff> {
assert_eq!(p.values.len(), 1 << self.k);
let mut a = Vec::with_capacity(self.extended_len());
a.extend(&p.values);
self.distribute_powers_zeta(&mut a, true);
a.resize(self.extended_len(), F::ZERO);
self.fft_inner(&mut a, self.extended_omega, self.extended_k, false);
Polynomial {
values: a,
_marker: PhantomData,
}
}
/// This takes us from an n-length coefficient vector into parts of the
/// extended evaluation domain. For example, for a polynomial with size n,
/// and an extended domain of size mn, we can compute all parts
/// independently, which are
/// `FFT(f(zeta * X), n)`
/// `FFT(f(zeta * extended_omega * X), n)`
/// ...
/// `FFT(f(zeta * extended_omega^{m-1} * X), n)`
pub fn coeff_to_extended_parts(
&self,
a: &Polynomial<F, Coeff>,
) -> Vec<Polynomial<F, LagrangeCoeff>> {
assert_eq!(a.values.len(), 1 << self.k);
let num_parts = self.extended_len() >> self.k;
let mut extended_omega_factor = F::ONE;
(0..num_parts)
.map(|_| {
let part = self.coeff_to_extended_part(a.clone(), extended_omega_factor);
extended_omega_factor *= self.extended_omega;
part
})
.collect()
}
/// This takes us from several n-length coefficient vectors each into parts
/// of the extended evaluation domain. For example, for a polynomial with
/// size n, and an extended domain of size mn, we can compute all parts
/// independently, which are
/// `FFT(f(zeta * X), n)`
/// `FFT(f(zeta * extended_omega * X), n)`
/// ...
/// `FFT(f(zeta * extended_omega^{m-1} * X), n)`
pub fn batched_coeff_to_extended_parts(
&self,
a: &[Polynomial<F, Coeff>],
) -> Vec<Vec<Polynomial<F, LagrangeCoeff>>> {
assert_eq!(a[0].values.len(), 1 << self.k);
let mut extended_omega_factor = F::ONE;
let num_parts = self.extended_len() >> self.k;
(0..num_parts)
.map(|_| {
let a_lagrange = a
.iter()
.map(|poly| self.coeff_to_extended_part(poly.clone(), extended_omega_factor))
.collect();
extended_omega_factor *= self.extended_omega;
a_lagrange
})
.collect()
}
/// This takes us from an n-length coefficient vector into a part of the
/// extended evaluation domain. For example, for a polynomial with size n,
/// and an extended domain of size mn, we can compute one of the m parts
/// separately, which is
/// `FFT(f(zeta * extended_omega_factor * X), n)`
/// where `extended_omega_factor` is `extended_omega^i` with `i` in `[0, m)`.
pub fn coeff_to_extended_part(
&self,
mut a: Polynomial<F, Coeff>,
extended_omega_factor: F,
) -> Polynomial<F, LagrangeCoeff> {
assert_eq!(a.values.len(), 1 << self.k);
self.distribute_powers(&mut a.values, self.g_coset * extended_omega_factor);
let data = self.get_fft_data(a.len());
best_fft(&mut a.values, self.omega, self.k, data, false);
Polynomial {
values: a.values,
_marker: PhantomData,
}
}
/// Rotate the extended domain polynomial over the original domain.
pub fn rotate_extended(
&self,
poly: &Polynomial<F, ExtendedLagrangeCoeff>,
rotation: Rotation,
) -> Polynomial<F, ExtendedLagrangeCoeff> {
let new_rotation = ((1 << (self.extended_k - self.k)) * rotation.0.abs()) as usize;
let mut poly = poly.clone();
if rotation.0 >= 0 {
poly.values.rotate_left(new_rotation);
} else {
poly.values.rotate_right(new_rotation);
}
poly
}
/// This takes us from the extended evaluation domain and gets us the
/// quotient polynomial coefficients.
///
/// This function will panic if the provided vector is not the correct
/// length.
// TODO/FIXME: caller should be responsible for truncating
pub fn extended_to_coeff(&self, mut a: Polynomial<F, ExtendedLagrangeCoeff>) -> Vec<F> {
assert_eq!(a.values.len(), self.extended_len());
// Inverse FFT
self.ifft(
&mut a.values,
self.extended_omega_inv,
self.extended_k,
self.extended_ifft_divisor,
);
// Distribute powers to move from coset; opposite from the
// transformation we performed earlier.
self.distribute_powers_zeta(&mut a.values, false);
// Truncate it to match the size of the quotient polynomial; the
// evaluation domain might be slightly larger than necessary because
// it always lies on a power-of-two boundary.
a.values
.truncate((&self.n * self.quotient_poly_degree) as usize);
a.values
}
/// This takes us from the a list of lagrange-based polynomials with
/// different degrees and gets their extended lagrange-based summation.
pub fn lagrange_vecs_to_extended(
&self,
mut a: Vec<Vec<Polynomial<F, LagrangeCoeff>>>,
) -> Polynomial<F, ExtendedLagrangeCoeff> {
let mut result_poly = if a[a.len() - 1].len() == 1 << (self.extended_k - self.k) {
self.lagrange_vec_to_extended(a.pop().unwrap())
} else {
self.empty_extended()
};
// Transform from each cluster of lagrange representations to coeff representations.
let mut ifft_divisor = self.extended_ifft_divisor;
let mut omega_inv = self.extended_omega_inv;
{
let mut i = a.last().unwrap().len() << self.k;
while i < (1 << self.extended_k) {
ifft_divisor = ifft_divisor + ifft_divisor;
omega_inv = omega_inv * omega_inv;
i <<= 1;
}
}
let mut result = vec![F::ZERO; 1 << self.extended_k as usize];
for (i, a_parts) in a.into_iter().enumerate().rev() {
// transpose the values in parallel
assert_eq!(1 << i, a_parts.len());
let mut a_poly: Vec<F> = {
let mut transposed = vec![vec![F::ZERO; a_parts.len()]; self.n as usize];
a_parts.into_iter().enumerate().for_each(|(j, p)| {
parallelize(&mut transposed, |transposed, start| {
for (transposed, p) in transposed.iter_mut().zip(p.values[start..].iter()) {
transposed[j] = *p;
}
});
});
transposed.into_iter().flatten().collect()
};
self.ifft(&mut a_poly, omega_inv, self.k + i as u32, ifft_divisor);
ifft_divisor = ifft_divisor + ifft_divisor;
omega_inv = omega_inv * omega_inv;
parallelize(&mut result[0..(self.n << i) as usize], |result, start| {
for (other, current) in result.iter_mut().zip(a_poly[start..].iter()) {
*other += current;
}
});
}
let data = self.get_fft_data(result.len());
best_fft(
&mut result,
self.extended_omega,
self.extended_k,
data,
false,
);
parallelize(&mut result_poly.values, |values, start| {
for (value, other) in values.iter_mut().zip(result[start..].iter()) {
*value += other;
}
});
result_poly
}
/// This divides the polynomial (in the extended domain) by the vanishing
/// polynomial of the $2^k$ size domain.
pub fn divide_by_vanishing_poly(
&self,
mut a: Polynomial<F, ExtendedLagrangeCoeff>,
) -> Polynomial<F, ExtendedLagrangeCoeff> {
assert_eq!(a.values.len(), self.extended_len());
// Divide to obtain the quotient polynomial in the coset evaluation
// domain.
parallelize(&mut a.values, |h, mut index| {
for h in h {
*h *= &self.t_evaluations[index % self.t_evaluations.len()];
index += 1;
}
});
Polynomial {
values: a.values,
_marker: PhantomData,
}
}
/// Given a slice of group elements `[a_0, a_1, a_2, ...]`, this returns
/// `[a_0, [zeta]a_1, [zeta^2]a_2, a_3, [zeta]a_4, [zeta^2]a_5, a_6, ...]`,
/// where zeta is a cube root of unity in the multiplicative subgroup with
/// order (p - 1), i.e. zeta^3 = 1.
///
/// `into_coset` should be set to `true` when moving into the coset,
/// and `false` when moving out. This toggles the choice of `zeta`.
fn distribute_powers_zeta(&self, a: &mut [F], into_coset: bool) {
let coset_powers = if into_coset {
[self.g_coset, self.g_coset_inv]
} else {
[self.g_coset_inv, self.g_coset]
};
parallelize(a, |a, mut index| {
for a in a {
// Distribute powers to move into/from coset
let i = index % (coset_powers.len() + 1);
if i != 0 {
*a *= &coset_powers[i - 1];
}
index += 1;
}
});
}
/// Given a slice of group elements `[a_0, a_1, a_2, ...]`, this returns
/// `[a_0, [c]a_1, [c^2]a_2, [c^3]a_3, [c^4]a_4, ...]`,
///
fn distribute_powers(&self, a: &mut [F], c: F) {
parallelize(a, |a, index| {
let mut c_power = c.pow_vartime([index as u64]);
for a in a {
*a *= c_power;
c_power *= c;
}
});
}
fn ifft(&self, a: &mut Vec<F>, omega_inv: F, log_n: u32, divisor: F) {
let fft_data = self.get_fft_data(a.len());
crate::fft::parallel::fft(a, omega_inv, log_n, fft_data, true);
// self.fft_inner(a, omega_inv, log_n, true);
parallelize(a, |a, _| {
for a in a {
// Finish iFFT
*a *= &divisor;
}
});
}
fn fft_inner(&self, a: &mut Vec<F>, omega: F, log_n: u32, inverse: bool) {
let fft_data = self.get_fft_data(a.len());
best_fft(a, omega, log_n, fft_data, inverse)
}
/// Get the size of the domain
pub fn k(&self) -> u32 {
self.k
}
/// Get the size of the extended domain
pub fn extended_k(&self) -> u32 {
self.extended_k
}
/// Get the size of the extended domain
pub fn extended_len(&self) -> usize {
1 << self.extended_k
}
/// Get $\omega$, the generator of the $2^k$ order multiplicative subgroup.
pub fn get_omega(&self) -> F {
self.omega
}
/// Get $\omega^{-1}$, the inverse of the generator of the $2^k$ order
/// multiplicative subgroup.
pub fn get_omega_inv(&self) -> F {
self.omega_inv
}
/// Get the generator of the extended domain's multiplicative subgroup.
pub fn get_extended_omega(&self) -> F {
self.extended_omega
}
/// Multiplies a value by some power of $\omega$, essentially rotating over
/// the domain.
pub fn rotate_omega(&self, value: F, rotation: Rotation) -> F {
let mut point = value;
if rotation.0 >= 0 {
point *= &self.get_omega().pow_vartime([rotation.0 as u64]);
} else {
point *= &self
.get_omega_inv()
.pow_vartime([(rotation.0 as i64).unsigned_abs()]);
}
point
}
/// Computes evaluations (at the point `x`, where `xn = x^n`) of Lagrange
/// basis polynomials `l_i(X)` defined such that `l_i(omega^i) = 1` and
/// `l_i(omega^j) = 0` for all `j != i` at each provided rotation `i`.
///
/// # Implementation
///
/// The polynomial
/// $$\prod_{j=0,j \neq i}^{n - 1} (X - \omega^j)$$
/// has a root at all points in the domain except $\omega^i$, where it evaluates to
/// $$\prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)$$
/// and so we divide that polynomial by this value to obtain $l_i(X)$. Since
/// $$\prod_{j=0,j \neq i}^{n - 1} (X - \omega^j)
/// = \frac{X^n - 1}{X - \omega^i}$$
/// then $l_i(x)$ for some $x$ is evaluated as
/// $$\left(\frac{x^n - 1}{x - \omega^i}\right)
/// \cdot \left(\frac{1}{\prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)}\right).$$
/// We refer to
/// $$1 \over \prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)$$
/// as the barycentric weight of $\omega^i$.
///
/// We know that for $i = 0$
/// $$\frac{1}{\prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)} = \frac{1}{n}.$$
///
/// If we multiply $(1 / n)$ by $\omega^i$ then we obtain
/// $$\frac{1}{\prod_{j=0,j \neq 0}^{n - 1} (\omega^i - \omega^j)}
/// = \frac{1}{\prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)}$$
/// which is the barycentric weight of $\omega^i$.
pub fn l_i_range<I: IntoIterator<Item = i32> + Clone>(
&self,
x: F,
xn: F,
rotations: I,
) -> Vec<F> {
let mut results;
{
let rotations = rotations.clone().into_iter();
results = Vec::with_capacity(rotations.size_hint().1.unwrap_or(0));
for rotation in rotations {
let rotation = Rotation(rotation);
let result = x - self.rotate_omega(F::ONE, rotation);
results.push(result);
}
results.iter_mut().batch_invert();
}
let common = (xn - F::ONE) * self.barycentric_weight;
for (rotation, result) in rotations.into_iter().zip(results.iter_mut()) {
let rotation = Rotation(rotation);
*result = self.rotate_omega(*result * common, rotation);
}
results
}
/// Gets the quotient polynomial's degree (as a multiple of n)
pub fn get_quotient_poly_degree(&self) -> usize {
self.quotient_poly_degree as usize
}
/// Obtain a pinned version of this evaluation domain; a structure with the
/// minimal parameters needed to determine the rest of the evaluation
/// domain.
pub fn pinned(&self) -> PinnedEvaluationDomain<'_, F> {
PinnedEvaluationDomain {
k: &self.k,
extended_k: &self.extended_k,
omega: &self.omega,
}
}
/// Get the private field `n`
pub fn get_n(&self) -> u64 {
self.n
}
/// Get the private `fft_data`
pub fn get_fft_data(&self, l: usize) -> &FFTData<F> {
self.fft_data
.get(&l)
.expect("log_2(l) must be in k..=extended_k")
}
}
/// Represents the minimal parameters that determine an `EvaluationDomain`.
#[allow(dead_code)]
#[derive(Debug)]
pub struct PinnedEvaluationDomain<'a, F: Field> {
k: &'a u32,
extended_k: &'a u32,
omega: &'a F,
}
#[test]
fn test_rotate() {
use rand_core::OsRng;
use crate::arithmetic::eval_polynomial;
use halo2curves::pasta::pallas::Scalar;
let domain = EvaluationDomain::<Scalar>::new(1, 3);
let rng = OsRng;
let mut poly = domain.empty_lagrange();
assert_eq!(poly.len(), 8);
for value in poly.iter_mut() {
*value = Scalar::random(rng);
}
let poly_rotated_cur = poly.rotate(Rotation::cur());
let poly_rotated_next = poly.rotate(Rotation::next());
let poly_rotated_prev = poly.rotate(Rotation::prev());
let poly = domain.lagrange_to_coeff(poly);
let poly_rotated_cur = domain.lagrange_to_coeff(poly_rotated_cur);
let poly_rotated_next = domain.lagrange_to_coeff(poly_rotated_next);
let poly_rotated_prev = domain.lagrange_to_coeff(poly_rotated_prev);
let x = Scalar::random(rng);
assert_eq!(
eval_polynomial(&poly[..], x),
eval_polynomial(&poly_rotated_cur[..], x)
);
assert_eq!(
eval_polynomial(&poly[..], x * domain.omega),
eval_polynomial(&poly_rotated_next[..], x)
);
assert_eq!(
eval_polynomial(&poly[..], x * domain.omega_inv),
eval_polynomial(&poly_rotated_prev[..], x)
);
}
#[test]
fn test_l_i() {
use rand_core::OsRng;
use crate::arithmetic::{eval_polynomial, lagrange_interpolate};
use halo2curves::pasta::pallas::Scalar;
let domain = EvaluationDomain::<Scalar>::new(1, 3);
let mut l = vec![];
let mut points = vec![];
for i in 0..8 {
points.push(domain.omega.pow([i]));
}
for i in 0..8 {
let mut l_i = vec![Scalar::zero(); 8];
l_i[i] = Scalar::ONE;
let l_i = lagrange_interpolate(&points[..], &l_i[..]);
l.push(l_i);
}
let x = Scalar::random(OsRng);
let xn = x.pow([8]);
let evaluations = domain.l_i_range(x, xn, -7..=7);
for i in 0..8 {
assert_eq!(eval_polynomial(&l[i][..], x), evaluations[7 + i]);
assert_eq!(eval_polynomial(&l[(8 - i) % 8][..], x), evaluations[7 - i]);
}
}
#[test]
fn test_coeff_to_extended_part() {
use halo2curves::pasta::pallas::Scalar;
use rand_core::OsRng;
let domain = EvaluationDomain::<Scalar>::new(1, 3);
let rng = OsRng;
let mut poly = domain.empty_coeff();
assert_eq!(poly.len(), 8);
for value in poly.iter_mut() {
*value = Scalar::random(rng);
}
let want = domain.coeff_to_extended(&poly);
let got = {
let parts = domain.coeff_to_extended_parts(&poly);
domain.lagrange_vec_to_extended(parts)
};
assert_eq!(want.values, got.values);
}
#[test]
fn bench_coeff_to_extended_parts() {
use halo2curves::pasta::pallas::Scalar;
use rand_core::OsRng;
use std::time::Instant;
let k = 20;
let domain = EvaluationDomain::<Scalar>::new(3, k);
let rng = OsRng;
let mut poly1 = domain.empty_coeff();
assert_eq!(poly1.len(), 1 << k);
for value in poly1.iter_mut() {
*value = Scalar::random(rng);
}
let poly2 = poly1.clone();
let coeff_to_extended_timer = Instant::now();
let _ = domain.coeff_to_extended(&poly1);
println!(
"domain.coeff_to_extended time: {}s",
coeff_to_extended_timer.elapsed().as_secs_f64()
);
let coeff_to_extended_parts_timer = Instant::now();
let _ = domain.coeff_to_extended_parts(&poly2);
println!(
"domain.coeff_to_extended_parts time: {}s",
coeff_to_extended_parts_timer.elapsed().as_secs_f64()
);
}
#[test]
fn test_lagrange_vecs_to_extended() {
use halo2curves::pasta::pallas::Scalar;
use rand_core::OsRng;
let rng = OsRng;
let domain = EvaluationDomain::<Scalar>::new(8, 10);
let mut poly_vec = vec![];
let mut poly_lagrange_vecs = vec![];
let mut want = domain.empty_extended();
let mut omega = domain.extended_omega;
for i in (0..(domain.extended_k - domain.k + 1)).rev() {
let mut poly = vec![Scalar::zero(); (1 << i) * domain.n as usize];
for value in poly.iter_mut() {
*value = Scalar::random(rng);
}
// poly under coeff representation.
poly_vec.push(poly.clone());
// poly under lagrange vector representation.
let mut poly2 = poly.clone();
let data = domain.get_fft_data(poly2.len());
best_fft(&mut poly2, omega, i + domain.k, data, false);
let transposed_poly: Vec<Polynomial<Scalar, LagrangeCoeff>> = (0..(1 << i))
.map(|j| {
let mut p = domain.empty_lagrange();
for k in 0..domain.n {
p[k as usize] = poly2[j + (k as usize) * (1 << i)];
}
p
})
.collect();
poly_lagrange_vecs.push(transposed_poly);
// poly under extended representation.
poly.resize(domain.extended_len(), Scalar::zero());
let data = domain.get_fft_data(poly.len());
best_fft(
&mut poly,
domain.extended_omega,
domain.extended_k,
data,
false,
);
let poly = {
let mut p = domain.empty_extended();
p.values = poly;
p
};
want = want + &poly;
omega = omega * omega;
}
poly_lagrange_vecs.reverse();
let got = domain.lagrange_vecs_to_extended(poly_lagrange_vecs);
assert_eq!(want.values, got.values);
}
#[test]
fn bench_lagrange_vecs_to_extended() {
use halo2curves::pasta::pallas::Scalar;
use rand_core::OsRng;
use std::time::Instant;
let rng = OsRng;
let domain = EvaluationDomain::<Scalar>::new(8, 10);
let mut poly_vec = vec![];
let mut poly_lagrange_vecs = vec![];
let mut poly_extended_vecs = vec![];
let mut omega = domain.extended_omega;
for i in (0..(domain.extended_k - domain.k + 1)).rev() {
let mut poly = vec![Scalar::zero(); (1 << i) * domain.n as usize];
for value in poly.iter_mut() {
*value = Scalar::random(rng);
}
// poly under coeff representation.
poly_vec.push(poly.clone());
// poly under lagrange vector representation.
let mut poly2 = poly.clone();
let data = domain.get_fft_data(poly2.len());
best_fft(&mut poly2, omega, i + domain.k, data, false);
let transposed_poly: Vec<Polynomial<Scalar, LagrangeCoeff>> = (0..(1 << i))
.map(|j| {
let mut p = domain.empty_lagrange();
for k in 0..domain.n {
p[k as usize] = poly2[j + (k as usize) * (1 << i)];
}
p
})
.collect();
poly_lagrange_vecs.push(transposed_poly);
// poly under extended representation.
poly.resize(domain.extended_len(), Scalar::zero());
let data = domain.get_fft_data(poly.len());
best_fft(
&mut poly,
domain.extended_omega,
domain.extended_k,
data,
false,
);
let poly = {
let mut p = domain.empty_extended();
p.values = poly;
p
};
poly_extended_vecs.push(poly);
omega = omega * omega;
}
let want_timer = Instant::now();
let _ = poly_extended_vecs
.iter()
.fold(domain.empty_extended(), |acc, p| acc + p);
println!("want time: {}s", want_timer.elapsed().as_secs_f64());
poly_lagrange_vecs.reverse();
let got_timer = Instant::now();
let _ = domain.lagrange_vecs_to_extended(poly_lagrange_vecs);
println!("got time: {}s", got_timer.elapsed().as_secs_f64());
}