elliptic_curve/field.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
//! Field elements.
use crate::{
bigint::{ArrayEncoding, ByteArray, Integer},
Curve,
};
use generic_array::{typenum::Unsigned, GenericArray};
/// Size of serialized field elements of this elliptic curve.
pub type FieldBytesSize<C> = <C as Curve>::FieldBytesSize;
/// Byte representation of a base/scalar field element of a given curve.
pub type FieldBytes<C> = GenericArray<u8, FieldBytesSize<C>>;
/// Trait for decoding/encoding `Curve::Uint` from/to [`FieldBytes`] using
/// curve-specific rules.
///
/// Namely a curve's modulus may be smaller than the big integer type used to
/// internally represent field elements (since the latter are multiples of the
/// limb size), such as in the case of curves like NIST P-224 and P-521, and so
/// it may need to be padded/truncated to the right length.
///
/// Additionally, different curves have different endianness conventions, also
/// captured here.
pub trait FieldBytesEncoding<C>: ArrayEncoding + Integer
where
C: Curve,
{
/// Decode unsigned integer from serialized field element.
///
/// The default implementation assumes a big endian encoding.
fn decode_field_bytes(field_bytes: &FieldBytes<C>) -> Self {
debug_assert!(field_bytes.len() <= Self::ByteSize::USIZE);
let mut byte_array = ByteArray::<Self>::default();
let offset = Self::ByteSize::USIZE.saturating_sub(field_bytes.len());
byte_array[offset..].copy_from_slice(field_bytes);
Self::from_be_byte_array(byte_array)
}
/// Encode unsigned integer into serialized field element.
///
/// The default implementation assumes a big endian encoding.
fn encode_field_bytes(&self) -> FieldBytes<C> {
let mut field_bytes = FieldBytes::<C>::default();
debug_assert!(field_bytes.len() <= Self::ByteSize::USIZE);
let offset = Self::ByteSize::USIZE.saturating_sub(field_bytes.len());
field_bytes.copy_from_slice(&self.to_be_byte_array()[offset..]);
field_bytes
}
}