halo2_axiom/circuit.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
//! Traits and structs for implementing circuit components.
use std::{fmt, marker::PhantomData};
use ff::Field;
use crate::plonk::{
Advice, Any, Assigned, Challenge, Column, Error, Fixed, Instance, Selector, TableColumn,
};
mod value;
pub use value::Value;
pub mod floor_planner;
pub use floor_planner::single_pass::SimpleFloorPlanner;
pub mod layouter;
mod table_layouter;
pub use table_layouter::{SimpleTableLayouter, TableLayouter};
/// A chip implements a set of instructions that can be used by gadgets.
///
/// The chip stores state that is required at circuit synthesis time in
/// [`Chip::Config`], which can be fetched via [`Chip::config`].
///
/// The chip also loads any fixed configuration needed at synthesis time
/// using its own implementation of `load`, and stores it in [`Chip::Loaded`].
/// This can be accessed via [`Chip::loaded`].
pub trait Chip<F: Field>: Sized {
/// A type that holds the configuration for this chip, and any other state it may need
/// during circuit synthesis, that can be derived during [`Circuit::configure`].
///
/// [`Circuit::configure`]: crate::plonk::Circuit::configure
type Config: fmt::Debug + Clone;
/// A type that holds any general chip state that needs to be loaded at the start of
/// [`Circuit::synthesize`]. This might simply be `()` for some chips.
///
/// [`Circuit::synthesize`]: crate::plonk::Circuit::synthesize
type Loaded: fmt::Debug + Clone;
/// The chip holds its own configuration.
fn config(&self) -> &Self::Config;
/// Provides access to general chip state loaded at the beginning of circuit
/// synthesis.
///
/// Panics if called before `Chip::load`.
fn loaded(&self) -> &Self::Loaded;
}
/// Index of a region in a layouter
#[derive(Clone, Copy, Debug)]
pub struct RegionIndex(usize);
impl From<usize> for RegionIndex {
fn from(idx: usize) -> RegionIndex {
RegionIndex(idx)
}
}
impl std::ops::Deref for RegionIndex {
type Target = usize;
fn deref(&self) -> &Self::Target {
&self.0
}
}
/// Starting row of a region in a layouter
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct RegionStart(usize);
impl From<usize> for RegionStart {
fn from(idx: usize) -> RegionStart {
RegionStart(idx)
}
}
impl std::ops::Deref for RegionStart {
type Target = usize;
fn deref(&self) -> &Self::Target {
&self.0
}
}
/// A pointer to a cell within a circuit.
#[derive(Clone, Copy, Debug)]
pub struct Cell {
/// Identifies the region in which this cell resides.
// region_index: RegionIndex,
/// The relative offset of this cell within its region.
pub row_offset: usize,
/// The column of this cell.
pub column: Column<Any>,
}
/// An assigned cell.
#[derive(Clone, Debug)]
pub struct AssignedCell<V, F: Field> {
value: Value<V>,
cell: Cell,
_marker: PhantomData<F>,
}
impl<V, F: Field> AssignedCell<V, F> {
/// Returns the value of the [`AssignedCell`].
pub fn value(&self) -> Value<&V> {
self.value.as_ref()
}
/// Returns the cell.
pub fn cell(&self) -> Cell {
self.cell
}
pub fn row_offset(&self) -> usize {
self.cell.row_offset
}
pub fn column(&self) -> &Column<Any> {
&self.cell.column
}
}
impl<V, F: Field> AssignedCell<V, F>
where
for<'v> Assigned<F>: From<&'v V>,
{
/// Returns the field element value of the [`AssignedCell`].
pub fn value_field(&self) -> Value<Assigned<F>> {
self.value.to_field()
}
}
impl<F: Field> AssignedCell<Assigned<F>, F> {
/// Evaluates this assigned cell's value directly, performing an unbatched inversion
/// if necessary.
///
/// If the denominator is zero, the returned cell's value is zero.
pub fn evaluate(self) -> AssignedCell<F, F> {
AssignedCell {
value: self.value.evaluate(),
cell: self.cell,
_marker: Default::default(),
}
}
}
impl<'v, F: Field> AssignedCell<&'v Assigned<F>, F> {
/// Copies the value to a given advice cell and constrains them to be equal.
///
/// Returns an error if either this cell or the given cell are in columns
/// where equality has not been enabled.
pub fn copy_advice(
&self,
region: &mut Region<'_, F>,
column: Column<Advice>,
offset: usize,
) -> AssignedCell<&'_ Assigned<F>, F> {
let assigned_cell = region.assign_advice(column, offset, self.value.map(|v| *v));
region.constrain_equal(assigned_cell.cell, self.cell);
assigned_cell
}
}
/// A region of the circuit in which a [`Chip`] can assign cells.
///
/// Inside a region, the chip may freely use relative offsets; the [`Layouter`] will
/// treat these assignments as a single "region" within the circuit.
///
/// The [`Layouter`] is allowed to optimise between regions as it sees fit. Chips must use
/// [`Region::constrain_equal`] to copy in variables assigned in other regions.
///
/// TODO: It would be great if we could constrain the columns in these types to be
/// "logical" columns that are guaranteed to correspond to the chip (and have come from
/// `Chip::Config`).
#[derive(Debug)]
pub struct Region<'r, F: Field> {
region: &'r mut dyn layouter::RegionLayouter<F>,
}
impl<'r, F: Field> From<&'r mut dyn layouter::RegionLayouter<F>> for Region<'r, F> {
fn from(region: &'r mut dyn layouter::RegionLayouter<F>) -> Self {
Region { region }
}
}
impl<'r, F: Field> Region<'r, F> {
/// Enables a selector at the given offset.
pub(crate) fn enable_selector<A, AR>(
&mut self,
annotation: A,
selector: &Selector,
offset: usize,
) -> Result<(), Error>
where
A: Fn() -> AR,
AR: Into<String>,
{
self.region
.enable_selector(&|| annotation().into(), selector, offset)
}
/// Allows the circuit implementor to name/annotate a Column within a Region context.
///
/// This is useful in order to improve the amount of information that `prover.verify()`
/// and `prover.assert_satisfied()` can provide.
pub fn name_column<A, AR, T>(&mut self, annotation: A, column: T)
where
A: Fn() -> AR,
AR: Into<String>,
T: Into<Column<Any>>,
{
self.region
.name_column(&|| annotation().into(), column.into());
}
/// Assign an advice column value (witness).
///
/// Even though `to` has `FnMut` bounds, it is guaranteed to be called at most once.
// The returned &'v Assigned<F> lives longer than the mutable borrow of &mut self
pub fn assign_advice<'v>(
//, V, VR, A, AR>(
&mut self,
//annotation: A,
column: Column<Advice>,
offset: usize,
to: Value<impl Into<Assigned<F>>>, // For now only accept Value<F>, later might change to Value<Assigned<F>> for batch inversion
) -> AssignedCell<&'v Assigned<F>, F> {
//let mut value = Value::unknown();
self.region.assign_advice(
//&|| annotation().into(),
column,
offset,
to.map(|v| v.into()),
)
/*
Ok(AssignedCell {
value,
cell,
_marker: PhantomData,
})
*/
}
/// Assigns a constant value to the column `advice` at `offset` within this region.
///
/// The constant value will be assigned to a cell within one of the fixed columns
/// configured via `ConstraintSystem::enable_constant`.
///
/// Returns the advice cell.
pub fn assign_advice_from_constant<VR, A, AR>(
&mut self,
annotation: A,
column: Column<Advice>,
offset: usize,
constant: VR,
) -> Result<AssignedCell<VR, F>, Error>
where
for<'vr> Assigned<F>: From<&'vr VR>,
A: Fn() -> AR,
AR: Into<String>,
{
let cell = self.region.assign_advice_from_constant(
&|| annotation().into(),
column,
offset,
(&constant).into(),
)?;
Ok(AssignedCell {
value: Value::known(constant),
cell,
_marker: PhantomData,
})
}
/// Assign the value of the instance column's cell at absolute location
/// `row` to the column `advice` at `offset` within this region.
///
/// Returns the advice cell, and its value if known.
pub fn assign_advice_from_instance<A, AR>(
&mut self,
annotation: A,
instance: Column<Instance>,
row: usize,
advice: Column<Advice>,
offset: usize,
) -> Result<AssignedCell<F, F>, Error>
where
A: Fn() -> AR,
AR: Into<String>,
{
let (cell, value) = self.region.assign_advice_from_instance(
&|| annotation().into(),
instance,
row,
advice,
offset,
)?;
Ok(AssignedCell {
value,
cell,
_marker: PhantomData,
})
}
/// Returns the value of the instance column's cell at absolute location `row`.
///
/// This method is only provided for convenience; it does not create any constraints.
/// Callers still need to use [`Self::assign_advice_from_instance`] to constrain the
/// instance values in their circuit.
pub fn instance_value(
&mut self,
instance: Column<Instance>,
row: usize,
) -> Result<Value<F>, Error> {
self.region.instance_value(instance, row)
}
/// Assign a fixed value.
///
/// Even though `to` has `FnMut` bounds, it is guaranteed to be called at most once.
pub fn assign_fixed(
&mut self,
// annotation: A,
column: Column<Fixed>,
offset: usize,
to: impl Into<Assigned<F>>,
) -> Cell {
self.region.assign_fixed(column, offset, to.into())
/*
Ok(AssignedCell {
value,
cell,
_marker: PhantomData,
})
*/
}
/// Constrains a cell to have a constant value.
///
/// Returns an error if the cell is in a column where equality has not been enabled.
pub fn constrain_constant<VR>(&mut self, cell: Cell, constant: VR) -> Result<(), Error>
where
VR: Into<Assigned<F>>,
{
self.region.constrain_constant(cell, constant.into())
}
/// Constrains two cells to have the same value.
///
/// Returns an error if either of the cells are in columns where equality
/// has not been enabled.
pub fn constrain_equal(&mut self, left: Cell, right: Cell) {
self.region.constrain_equal(left, right);
}
/// Queries the value of the given challenge.
///
/// Returns `Value::unknown()` if the current synthesis phase is before the challenge can be queried.
pub fn get_challenge(&self, challenge: Challenge) -> Value<F> {
self.region.get_challenge(challenge)
}
/// Commit advice columns in current phase and squeeze challenges.
/// This can be called DURING synthesize.
pub fn next_phase(&mut self) {
self.region.next_phase();
}
}
/// A lookup table in the circuit.
#[derive(Debug)]
pub struct Table<'r, F: Field> {
table: &'r mut dyn TableLayouter<F>,
}
impl<'r, F: Field> From<&'r mut dyn TableLayouter<F>> for Table<'r, F> {
fn from(table: &'r mut dyn TableLayouter<F>) -> Self {
Table { table }
}
}
impl<'r, F: Field> Table<'r, F> {
/// Assigns a fixed value to a table cell.
///
/// Returns an error if the table cell has already been assigned to.
///
/// Even though `to` has `FnMut` bounds, it is guaranteed to be called at most once.
pub fn assign_cell<'v, V, VR, A, AR>(
&'v mut self,
annotation: A,
column: TableColumn,
offset: usize,
mut to: V,
) -> Result<(), Error>
where
V: FnMut() -> Value<VR> + 'v,
VR: Into<Assigned<F>>,
A: Fn() -> AR,
AR: Into<String>,
{
self.table
.assign_cell(&|| annotation().into(), column, offset, &mut || {
to().into_field()
})
}
}
/// A layout strategy within a circuit. The layouter is chip-agnostic and applies its
/// strategy to the context and config it is given.
///
/// This abstracts over the circuit assignments, handling row indices etc.
///
pub trait Layouter<F: Field> {
/// Represents the type of the "root" of this layouter, so that nested namespaces
/// can minimize indirection.
type Root: Layouter<F>;
/// Assign a region of gates to an absolute row number.
///
/// Inside the closure, the chip may freely use relative offsets; the `Layouter` will
/// treat these assignments as a single "region" within the circuit. Outside this
/// closure, the `Layouter` is allowed to optimise as it sees fit.
///
/// ```ignore
/// fn assign_region(&mut self, || "region name", |region| {
/// let config = chip.config();
/// region.assign_advice(config.a, offset, || { Some(value)});
/// });
/// ```
fn assign_region<A, AR, N, NR>(&mut self, name: N, assignment: A) -> Result<AR, Error>
where
A: FnOnce(Region<'_, F>) -> Result<AR, Error>,
N: Fn() -> NR,
NR: Into<String>;
/// Assign a table region to an absolute row number.
///
/// ```ignore
/// fn assign_table(&mut self, || "table name", |table| {
/// let config = chip.config();
/// table.assign_fixed(config.a, offset, || { Some(value)});
/// });
/// ```
fn assign_table<A, N, NR>(&mut self, name: N, assignment: A) -> Result<(), Error>
where
A: FnMut(Table<'_, F>) -> Result<(), Error>,
N: Fn() -> NR,
NR: Into<String>;
/// Constrains a [`Cell`] to equal an instance column's row value at an
/// absolute position.
fn constrain_instance(&mut self, cell: Cell, column: Column<Instance>, row: usize);
/// Commit advice columns in current phase and squeeze challenges.
/// This can be called DURING synthesize.
fn next_phase(&mut self);
/// Queries the value of the given challenge.
///
/// Returns `Value::unknown()` if the current synthesis phase is before the challenge can be queried.
fn get_challenge(&self, challenge: Challenge) -> Value<F>;
/// Gets the "root" of this assignment, bypassing the namespacing.
///
/// Not intended for downstream consumption; use [`Layouter::namespace`] instead.
fn get_root(&mut self) -> &mut Self::Root;
/// Creates a new (sub)namespace and enters into it.
///
/// Not intended for downstream consumption; use [`Layouter::namespace`] instead.
fn push_namespace<NR, N>(&mut self, name_fn: N)
where
NR: Into<String>,
N: FnOnce() -> NR;
/// Exits out of the existing namespace.
///
/// Not intended for downstream consumption; use [`Layouter::namespace`] instead.
fn pop_namespace(&mut self, gadget_name: Option<String>);
/// Enters into a namespace.
fn namespace<NR, N>(&mut self, name_fn: N) -> NamespacedLayouter<'_, F, Self::Root>
where
NR: Into<String>,
N: FnOnce() -> NR,
{
self.get_root().push_namespace(name_fn);
NamespacedLayouter(self.get_root(), PhantomData)
}
}
/// This is a "namespaced" layouter which borrows a `Layouter` (pushing a namespace
/// context) and, when dropped, pops out of the namespace context.
#[derive(Debug)]
pub struct NamespacedLayouter<'a, F: Field, L: Layouter<F> + 'a>(&'a mut L, PhantomData<F>);
impl<'a, F: Field, L: Layouter<F> + 'a> Layouter<F> for NamespacedLayouter<'a, F, L> {
type Root = L::Root;
fn assign_region<A, AR, N, NR>(&mut self, name: N, assignment: A) -> Result<AR, Error>
where
A: FnOnce(Region<'_, F>) -> Result<AR, Error>,
N: Fn() -> NR,
NR: Into<String>,
{
self.0.assign_region(name, assignment)
}
fn assign_table<A, N, NR>(&mut self, name: N, assignment: A) -> Result<(), Error>
where
A: FnMut(Table<'_, F>) -> Result<(), Error>,
N: Fn() -> NR,
NR: Into<String>,
{
self.0.assign_table(name, assignment)
}
fn constrain_instance(&mut self, cell: Cell, column: Column<Instance>, row: usize) {
self.0.constrain_instance(cell, column, row);
}
fn get_challenge(&self, challenge: Challenge) -> Value<F> {
self.0.get_challenge(challenge)
}
fn next_phase(&mut self) {
self.0.next_phase();
}
fn get_root(&mut self) -> &mut Self::Root {
self.0.get_root()
}
fn push_namespace<NR, N>(&mut self, _name_fn: N)
where
NR: Into<String>,
N: FnOnce() -> NR,
{
panic!("Only the root's push_namespace should be called");
}
fn pop_namespace(&mut self, _gadget_name: Option<String>) {
panic!("Only the root's pop_namespace should be called");
}
}
impl<'a, F: Field, L: Layouter<F> + 'a> Drop for NamespacedLayouter<'a, F, L> {
fn drop(&mut self) {
let gadget_name = {
#[cfg(feature = "gadget-traces")]
{
let mut gadget_name = None;
let mut is_second_frame = false;
backtrace::trace(|frame| {
if is_second_frame {
// Resolve this instruction pointer to a symbol name.
backtrace::resolve_frame(frame, |symbol| {
gadget_name = symbol.name().map(|name| format!("{:#}", name));
});
// We are done!
false
} else {
// We want the next frame.
is_second_frame = true;
true
}
});
gadget_name
}
#[cfg(not(feature = "gadget-traces"))]
None
};
self.get_root().pop_namespace(gadget_name);
}
}