halo2_axiom/
circuit.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
//! Traits and structs for implementing circuit components.

use std::{fmt, marker::PhantomData};

use ff::Field;

use crate::plonk::{
    Advice, Any, Assigned, Challenge, Column, Error, Fixed, Instance, Selector, TableColumn,
};

mod value;
pub use value::Value;

pub mod floor_planner;
pub use floor_planner::single_pass::SimpleFloorPlanner;

pub mod layouter;
mod table_layouter;

pub use table_layouter::{SimpleTableLayouter, TableLayouter};

/// A chip implements a set of instructions that can be used by gadgets.
///
/// The chip stores state that is required at circuit synthesis time in
/// [`Chip::Config`], which can be fetched via [`Chip::config`].
///
/// The chip also loads any fixed configuration needed at synthesis time
/// using its own implementation of `load`, and stores it in [`Chip::Loaded`].
/// This can be accessed via [`Chip::loaded`].
pub trait Chip<F: Field>: Sized {
    /// A type that holds the configuration for this chip, and any other state it may need
    /// during circuit synthesis, that can be derived during [`Circuit::configure`].
    ///
    /// [`Circuit::configure`]: crate::plonk::Circuit::configure
    type Config: fmt::Debug + Clone;

    /// A type that holds any general chip state that needs to be loaded at the start of
    /// [`Circuit::synthesize`]. This might simply be `()` for some chips.
    ///
    /// [`Circuit::synthesize`]: crate::plonk::Circuit::synthesize
    type Loaded: fmt::Debug + Clone;

    /// The chip holds its own configuration.
    fn config(&self) -> &Self::Config;

    /// Provides access to general chip state loaded at the beginning of circuit
    /// synthesis.
    ///
    /// Panics if called before `Chip::load`.
    fn loaded(&self) -> &Self::Loaded;
}

/// Index of a region in a layouter
#[derive(Clone, Copy, Debug)]
pub struct RegionIndex(usize);

impl From<usize> for RegionIndex {
    fn from(idx: usize) -> RegionIndex {
        RegionIndex(idx)
    }
}

impl std::ops::Deref for RegionIndex {
    type Target = usize;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

/// Starting row of a region in a layouter
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct RegionStart(usize);

impl From<usize> for RegionStart {
    fn from(idx: usize) -> RegionStart {
        RegionStart(idx)
    }
}

impl std::ops::Deref for RegionStart {
    type Target = usize;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

/// A pointer to a cell within a circuit.
#[derive(Clone, Copy, Debug)]
pub struct Cell {
    /// Identifies the region in which this cell resides.
    // region_index: RegionIndex,
    /// The relative offset of this cell within its region.
    pub row_offset: usize,
    /// The column of this cell.
    pub column: Column<Any>,
}

/// An assigned cell.
#[derive(Clone, Debug)]
pub struct AssignedCell<V, F: Field> {
    value: Value<V>,
    cell: Cell,
    _marker: PhantomData<F>,
}

impl<V, F: Field> AssignedCell<V, F> {
    /// Returns the value of the [`AssignedCell`].
    pub fn value(&self) -> Value<&V> {
        self.value.as_ref()
    }

    /// Returns the cell.
    pub fn cell(&self) -> Cell {
        self.cell
    }

    pub fn row_offset(&self) -> usize {
        self.cell.row_offset
    }

    pub fn column(&self) -> &Column<Any> {
        &self.cell.column
    }
}

impl<V, F: Field> AssignedCell<V, F>
where
    for<'v> Assigned<F>: From<&'v V>,
{
    /// Returns the field element value of the [`AssignedCell`].
    pub fn value_field(&self) -> Value<Assigned<F>> {
        self.value.to_field()
    }
}

impl<F: Field> AssignedCell<Assigned<F>, F> {
    /// Evaluates this assigned cell's value directly, performing an unbatched inversion
    /// if necessary.
    ///
    /// If the denominator is zero, the returned cell's value is zero.
    pub fn evaluate(self) -> AssignedCell<F, F> {
        AssignedCell {
            value: self.value.evaluate(),
            cell: self.cell,
            _marker: Default::default(),
        }
    }
}

impl<'v, F: Field> AssignedCell<&'v Assigned<F>, F> {
    /// Copies the value to a given advice cell and constrains them to be equal.
    ///
    /// Returns an error if either this cell or the given cell are in columns
    /// where equality has not been enabled.
    pub fn copy_advice(
        &self,
        region: &mut Region<'_, F>,
        column: Column<Advice>,
        offset: usize,
    ) -> AssignedCell<&'_ Assigned<F>, F> {
        let assigned_cell = region.assign_advice(column, offset, self.value.map(|v| *v));
        region.constrain_equal(assigned_cell.cell, self.cell);
        assigned_cell
    }
}

/// A region of the circuit in which a [`Chip`] can assign cells.
///
/// Inside a region, the chip may freely use relative offsets; the [`Layouter`] will
/// treat these assignments as a single "region" within the circuit.
///
/// The [`Layouter`] is allowed to optimise between regions as it sees fit. Chips must use
/// [`Region::constrain_equal`] to copy in variables assigned in other regions.
///
/// TODO: It would be great if we could constrain the columns in these types to be
/// "logical" columns that are guaranteed to correspond to the chip (and have come from
/// `Chip::Config`).
#[derive(Debug)]
pub struct Region<'r, F: Field> {
    region: &'r mut dyn layouter::RegionLayouter<F>,
}

impl<'r, F: Field> From<&'r mut dyn layouter::RegionLayouter<F>> for Region<'r, F> {
    fn from(region: &'r mut dyn layouter::RegionLayouter<F>) -> Self {
        Region { region }
    }
}

impl<'r, F: Field> Region<'r, F> {
    /// Enables a selector at the given offset.
    pub(crate) fn enable_selector<A, AR>(
        &mut self,
        annotation: A,
        selector: &Selector,
        offset: usize,
    ) -> Result<(), Error>
    where
        A: Fn() -> AR,
        AR: Into<String>,
    {
        self.region
            .enable_selector(&|| annotation().into(), selector, offset)
    }

    /// Allows the circuit implementor to name/annotate a Column within a Region context.
    ///
    /// This is useful in order to improve the amount of information that `prover.verify()`
    /// and `prover.assert_satisfied()` can provide.
    pub fn name_column<A, AR, T>(&mut self, annotation: A, column: T)
    where
        A: Fn() -> AR,
        AR: Into<String>,
        T: Into<Column<Any>>,
    {
        self.region
            .name_column(&|| annotation().into(), column.into());
    }

    /// Assign an advice column value (witness).
    ///
    /// Even though `to` has `FnMut` bounds, it is guaranteed to be called at most once.
    // The returned &'v Assigned<F> lives longer than the mutable borrow of &mut self
    pub fn assign_advice<'v>(
        //, V, VR, A, AR>(
        &mut self,
        //annotation: A,
        column: Column<Advice>,
        offset: usize,
        to: Value<impl Into<Assigned<F>>>, // For now only accept Value<F>, later might change to Value<Assigned<F>> for batch inversion
    ) -> AssignedCell<&'v Assigned<F>, F> {
        //let mut value = Value::unknown();
        self.region.assign_advice(
            //&|| annotation().into(),
            column,
            offset,
            to.map(|v| v.into()),
        )

        /*
        Ok(AssignedCell {
            value,
            cell,
            _marker: PhantomData,
        })
        */
    }

    /// Assigns a constant value to the column `advice` at `offset` within this region.
    ///
    /// The constant value will be assigned to a cell within one of the fixed columns
    /// configured via `ConstraintSystem::enable_constant`.
    ///
    /// Returns the advice cell.
    pub fn assign_advice_from_constant<VR, A, AR>(
        &mut self,
        annotation: A,
        column: Column<Advice>,
        offset: usize,
        constant: VR,
    ) -> Result<AssignedCell<VR, F>, Error>
    where
        for<'vr> Assigned<F>: From<&'vr VR>,
        A: Fn() -> AR,
        AR: Into<String>,
    {
        let cell = self.region.assign_advice_from_constant(
            &|| annotation().into(),
            column,
            offset,
            (&constant).into(),
        )?;

        Ok(AssignedCell {
            value: Value::known(constant),
            cell,
            _marker: PhantomData,
        })
    }

    /// Assign the value of the instance column's cell at absolute location
    /// `row` to the column `advice` at `offset` within this region.
    ///
    /// Returns the advice cell, and its value if known.
    pub fn assign_advice_from_instance<A, AR>(
        &mut self,
        annotation: A,
        instance: Column<Instance>,
        row: usize,
        advice: Column<Advice>,
        offset: usize,
    ) -> Result<AssignedCell<F, F>, Error>
    where
        A: Fn() -> AR,
        AR: Into<String>,
    {
        let (cell, value) = self.region.assign_advice_from_instance(
            &|| annotation().into(),
            instance,
            row,
            advice,
            offset,
        )?;

        Ok(AssignedCell {
            value,
            cell,
            _marker: PhantomData,
        })
    }

    /// Returns the value of the instance column's cell at absolute location `row`.
    ///
    /// This method is only provided for convenience; it does not create any constraints.
    /// Callers still need to use [`Self::assign_advice_from_instance`] to constrain the
    /// instance values in their circuit.
    pub fn instance_value(
        &mut self,
        instance: Column<Instance>,
        row: usize,
    ) -> Result<Value<F>, Error> {
        self.region.instance_value(instance, row)
    }

    /// Assign a fixed value.
    ///
    /// Even though `to` has `FnMut` bounds, it is guaranteed to be called at most once.
    pub fn assign_fixed(
        &mut self,
        // annotation: A,
        column: Column<Fixed>,
        offset: usize,
        to: impl Into<Assigned<F>>,
    ) -> Cell {
        self.region.assign_fixed(column, offset, to.into())
        /*
        Ok(AssignedCell {
            value,
            cell,
            _marker: PhantomData,
        })
        */
    }

    /// Constrains a cell to have a constant value.
    ///
    /// Returns an error if the cell is in a column where equality has not been enabled.
    pub fn constrain_constant<VR>(&mut self, cell: Cell, constant: VR) -> Result<(), Error>
    where
        VR: Into<Assigned<F>>,
    {
        self.region.constrain_constant(cell, constant.into())
    }

    /// Constrains two cells to have the same value.
    ///
    /// Returns an error if either of the cells are in columns where equality
    /// has not been enabled.
    pub fn constrain_equal(&mut self, left: Cell, right: Cell) {
        self.region.constrain_equal(left, right);
    }

    /// Queries the value of the given challenge.
    ///
    /// Returns `Value::unknown()` if the current synthesis phase is before the challenge can be queried.
    pub fn get_challenge(&self, challenge: Challenge) -> Value<F> {
        self.region.get_challenge(challenge)
    }

    /// Commit advice columns in current phase and squeeze challenges.
    /// This can be called DURING synthesize.
    pub fn next_phase(&mut self) {
        self.region.next_phase();
    }
}

/// A lookup table in the circuit.
#[derive(Debug)]
pub struct Table<'r, F: Field> {
    table: &'r mut dyn TableLayouter<F>,
}

impl<'r, F: Field> From<&'r mut dyn TableLayouter<F>> for Table<'r, F> {
    fn from(table: &'r mut dyn TableLayouter<F>) -> Self {
        Table { table }
    }
}

impl<'r, F: Field> Table<'r, F> {
    /// Assigns a fixed value to a table cell.
    ///
    /// Returns an error if the table cell has already been assigned to.
    ///
    /// Even though `to` has `FnMut` bounds, it is guaranteed to be called at most once.
    pub fn assign_cell<'v, V, VR, A, AR>(
        &'v mut self,
        annotation: A,
        column: TableColumn,
        offset: usize,
        mut to: V,
    ) -> Result<(), Error>
    where
        V: FnMut() -> Value<VR> + 'v,
        VR: Into<Assigned<F>>,
        A: Fn() -> AR,
        AR: Into<String>,
    {
        self.table
            .assign_cell(&|| annotation().into(), column, offset, &mut || {
                to().into_field()
            })
    }
}

/// A layout strategy within a circuit. The layouter is chip-agnostic and applies its
/// strategy to the context and config it is given.
///
/// This abstracts over the circuit assignments, handling row indices etc.
///
pub trait Layouter<F: Field> {
    /// Represents the type of the "root" of this layouter, so that nested namespaces
    /// can minimize indirection.
    type Root: Layouter<F>;

    /// Assign a region of gates to an absolute row number.
    ///
    /// Inside the closure, the chip may freely use relative offsets; the `Layouter` will
    /// treat these assignments as a single "region" within the circuit. Outside this
    /// closure, the `Layouter` is allowed to optimise as it sees fit.
    ///
    /// ```ignore
    /// fn assign_region(&mut self, || "region name", |region| {
    ///     let config = chip.config();
    ///     region.assign_advice(config.a, offset, || { Some(value)});
    /// });
    /// ```
    fn assign_region<A, AR, N, NR>(&mut self, name: N, assignment: A) -> Result<AR, Error>
    where
        A: FnOnce(Region<'_, F>) -> Result<AR, Error>,
        N: Fn() -> NR,
        NR: Into<String>;

    /// Assign a table region to an absolute row number.
    ///
    /// ```ignore
    /// fn assign_table(&mut self, || "table name", |table| {
    ///     let config = chip.config();
    ///     table.assign_fixed(config.a, offset, || { Some(value)});
    /// });
    /// ```
    fn assign_table<A, N, NR>(&mut self, name: N, assignment: A) -> Result<(), Error>
    where
        A: FnMut(Table<'_, F>) -> Result<(), Error>,
        N: Fn() -> NR,
        NR: Into<String>;

    /// Constrains a [`Cell`] to equal an instance column's row value at an
    /// absolute position.
    fn constrain_instance(&mut self, cell: Cell, column: Column<Instance>, row: usize);

    /// Commit advice columns in current phase and squeeze challenges.
    /// This can be called DURING synthesize.
    fn next_phase(&mut self);

    /// Queries the value of the given challenge.
    ///
    /// Returns `Value::unknown()` if the current synthesis phase is before the challenge can be queried.
    fn get_challenge(&self, challenge: Challenge) -> Value<F>;

    /// Gets the "root" of this assignment, bypassing the namespacing.
    ///
    /// Not intended for downstream consumption; use [`Layouter::namespace`] instead.
    fn get_root(&mut self) -> &mut Self::Root;

    /// Creates a new (sub)namespace and enters into it.
    ///
    /// Not intended for downstream consumption; use [`Layouter::namespace`] instead.
    fn push_namespace<NR, N>(&mut self, name_fn: N)
    where
        NR: Into<String>,
        N: FnOnce() -> NR;

    /// Exits out of the existing namespace.
    ///
    /// Not intended for downstream consumption; use [`Layouter::namespace`] instead.
    fn pop_namespace(&mut self, gadget_name: Option<String>);

    /// Enters into a namespace.
    fn namespace<NR, N>(&mut self, name_fn: N) -> NamespacedLayouter<'_, F, Self::Root>
    where
        NR: Into<String>,
        N: FnOnce() -> NR,
    {
        self.get_root().push_namespace(name_fn);

        NamespacedLayouter(self.get_root(), PhantomData)
    }
}

/// This is a "namespaced" layouter which borrows a `Layouter` (pushing a namespace
/// context) and, when dropped, pops out of the namespace context.
#[derive(Debug)]
pub struct NamespacedLayouter<'a, F: Field, L: Layouter<F> + 'a>(&'a mut L, PhantomData<F>);

impl<'a, F: Field, L: Layouter<F> + 'a> Layouter<F> for NamespacedLayouter<'a, F, L> {
    type Root = L::Root;

    fn assign_region<A, AR, N, NR>(&mut self, name: N, assignment: A) -> Result<AR, Error>
    where
        A: FnOnce(Region<'_, F>) -> Result<AR, Error>,
        N: Fn() -> NR,
        NR: Into<String>,
    {
        self.0.assign_region(name, assignment)
    }

    fn assign_table<A, N, NR>(&mut self, name: N, assignment: A) -> Result<(), Error>
    where
        A: FnMut(Table<'_, F>) -> Result<(), Error>,
        N: Fn() -> NR,
        NR: Into<String>,
    {
        self.0.assign_table(name, assignment)
    }

    fn constrain_instance(&mut self, cell: Cell, column: Column<Instance>, row: usize) {
        self.0.constrain_instance(cell, column, row);
    }

    fn get_challenge(&self, challenge: Challenge) -> Value<F> {
        self.0.get_challenge(challenge)
    }

    fn next_phase(&mut self) {
        self.0.next_phase();
    }

    fn get_root(&mut self) -> &mut Self::Root {
        self.0.get_root()
    }

    fn push_namespace<NR, N>(&mut self, _name_fn: N)
    where
        NR: Into<String>,
        N: FnOnce() -> NR,
    {
        panic!("Only the root's push_namespace should be called");
    }

    fn pop_namespace(&mut self, _gadget_name: Option<String>) {
        panic!("Only the root's pop_namespace should be called");
    }
}

impl<'a, F: Field, L: Layouter<F> + 'a> Drop for NamespacedLayouter<'a, F, L> {
    fn drop(&mut self) {
        let gadget_name = {
            #[cfg(feature = "gadget-traces")]
            {
                let mut gadget_name = None;
                let mut is_second_frame = false;
                backtrace::trace(|frame| {
                    if is_second_frame {
                        // Resolve this instruction pointer to a symbol name.
                        backtrace::resolve_frame(frame, |symbol| {
                            gadget_name = symbol.name().map(|name| format!("{:#}", name));
                        });

                        // We are done!
                        false
                    } else {
                        // We want the next frame.
                        is_second_frame = true;
                        true
                    }
                });
                gadget_name
            }

            #[cfg(not(feature = "gadget-traces"))]
            None
        };

        self.get_root().pop_namespace(gadget_name);
    }
}