use super::super::{
circuit::Expression, ChallengeBeta, ChallengeGamma, ChallengeTheta, ChallengeX, Error,
ProvingKey,
};
use super::Argument;
use crate::{
arithmetic::{eval_polynomial, parallelize, CurveAffine, FieldExt},
poly::{
self,
commitment::{Blind, Params},
multiopen::ProverQuery,
Coeff, EvaluationDomain, ExtendedLagrangeCoeff, LagrangeCoeff, Polynomial, Rotation,
},
transcript::{EncodedChallenge, TranscriptWrite},
};
use group::{
ff::{BatchInvert, Field},
Curve,
};
use rand_core::RngCore;
use std::{
collections::BTreeMap,
iter,
ops::{Mul, MulAssign},
};
#[derive(Debug)]
pub(in crate::plonk) struct Permuted<C: CurveAffine, Ev> {
unpermuted_input_expressions: Vec<Polynomial<C::Scalar, LagrangeCoeff>>,
unpermuted_input_cosets: Vec<poly::Ast<Ev, C::Scalar, ExtendedLagrangeCoeff>>,
permuted_input_expression: Polynomial<C::Scalar, LagrangeCoeff>,
permuted_input_poly: Polynomial<C::Scalar, Coeff>,
permuted_input_coset: poly::AstLeaf<Ev, ExtendedLagrangeCoeff>,
permuted_input_blind: Blind<C::Scalar>,
unpermuted_table_expressions: Vec<Polynomial<C::Scalar, LagrangeCoeff>>,
unpermuted_table_cosets: Vec<poly::Ast<Ev, C::Scalar, ExtendedLagrangeCoeff>>,
permuted_table_expression: Polynomial<C::Scalar, LagrangeCoeff>,
permuted_table_poly: Polynomial<C::Scalar, Coeff>,
permuted_table_coset: poly::AstLeaf<Ev, ExtendedLagrangeCoeff>,
permuted_table_blind: Blind<C::Scalar>,
}
#[derive(Debug)]
pub(in crate::plonk) struct Committed<C: CurveAffine, Ev> {
permuted: Permuted<C, Ev>,
product_poly: Polynomial<C::Scalar, Coeff>,
product_coset: poly::AstLeaf<Ev, ExtendedLagrangeCoeff>,
product_blind: Blind<C::Scalar>,
}
pub(in crate::plonk) struct Constructed<C: CurveAffine> {
permuted_input_poly: Polynomial<C::Scalar, Coeff>,
permuted_input_blind: Blind<C::Scalar>,
permuted_table_poly: Polynomial<C::Scalar, Coeff>,
permuted_table_blind: Blind<C::Scalar>,
product_poly: Polynomial<C::Scalar, Coeff>,
product_blind: Blind<C::Scalar>,
}
pub(in crate::plonk) struct Evaluated<C: CurveAffine> {
constructed: Constructed<C>,
}
impl<F: FieldExt> Argument<F> {
pub(in crate::plonk) fn commit_permuted<
'a,
C,
E: EncodedChallenge<C>,
Ev: Copy + Send + Sync,
Ec: Copy + Send + Sync,
R: RngCore,
T: TranscriptWrite<C, E>,
>(
&self,
pk: &ProvingKey<C>,
params: &Params<C>,
domain: &EvaluationDomain<C::Scalar>,
value_evaluator: &poly::Evaluator<Ev, C::Scalar, LagrangeCoeff>,
coset_evaluator: &mut poly::Evaluator<Ec, C::Scalar, ExtendedLagrangeCoeff>,
theta: ChallengeTheta<C>,
advice_values: &'a [poly::AstLeaf<Ev, LagrangeCoeff>],
fixed_values: &'a [poly::AstLeaf<Ev, LagrangeCoeff>],
instance_values: &'a [poly::AstLeaf<Ev, LagrangeCoeff>],
advice_cosets: &'a [poly::AstLeaf<Ec, ExtendedLagrangeCoeff>],
fixed_cosets: &'a [poly::AstLeaf<Ec, ExtendedLagrangeCoeff>],
instance_cosets: &'a [poly::AstLeaf<Ec, ExtendedLagrangeCoeff>],
mut rng: R,
transcript: &mut T,
) -> Result<Permuted<C, Ec>, Error>
where
C: CurveAffine<ScalarExt = F>,
C::Curve: Mul<F, Output = C::Curve> + MulAssign<F>,
{
let compress_expressions = |expressions: &[Expression<C::Scalar>]| {
let unpermuted_expressions: Vec<_> = expressions
.iter()
.map(|expression| {
expression.evaluate(
&|scalar| poly::Ast::ConstantTerm(scalar),
&|_| panic!("virtual selectors are removed during optimization"),
&|_, column_index, rotation| {
fixed_values[column_index].with_rotation(rotation).into()
},
&|_, column_index, rotation| {
advice_values[column_index].with_rotation(rotation).into()
},
&|_, column_index, rotation| {
instance_values[column_index].with_rotation(rotation).into()
},
&|a| -a,
&|a, b| a + b,
&|a, b| a * b,
&|a, scalar| a * scalar,
)
})
.collect();
let unpermuted_cosets: Vec<_> = expressions
.iter()
.map(|expression| {
expression.evaluate(
&|scalar| poly::Ast::ConstantTerm(scalar),
&|_| panic!("virtual selectors are removed during optimization"),
&|_, column_index, rotation| {
fixed_cosets[column_index].with_rotation(rotation).into()
},
&|_, column_index, rotation| {
advice_cosets[column_index].with_rotation(rotation).into()
},
&|_, column_index, rotation| {
instance_cosets[column_index].with_rotation(rotation).into()
},
&|a| -a,
&|a, b| a + b,
&|a, b| a * b,
&|a, scalar| a * scalar,
)
})
.collect();
let compressed_expression = unpermuted_expressions.iter().fold(
poly::Ast::ConstantTerm(C::Scalar::zero()),
|acc, expression| &(acc * *theta) + expression,
);
(
unpermuted_expressions
.iter()
.map(|ast| value_evaluator.evaluate(ast, domain))
.collect(),
unpermuted_cosets,
value_evaluator.evaluate(&compressed_expression, domain),
)
};
let (unpermuted_input_expressions, unpermuted_input_cosets, compressed_input_expression) =
compress_expressions(&self.input_expressions);
let (unpermuted_table_expressions, unpermuted_table_cosets, compressed_table_expression) =
compress_expressions(&self.table_expressions);
let (permuted_input_expression, permuted_table_expression) = permute_expression_pair::<C, _>(
pk,
params,
domain,
&mut rng,
&compressed_input_expression,
&compressed_table_expression,
)?;
let mut commit_values = |values: &Polynomial<C::Scalar, LagrangeCoeff>| {
let poly = pk.vk.domain.lagrange_to_coeff(values.clone());
let blind = Blind(C::Scalar::random(&mut rng));
let commitment = params.commit_lagrange(values, blind).to_affine();
(poly, blind, commitment)
};
let (permuted_input_poly, permuted_input_blind, permuted_input_commitment) =
commit_values(&permuted_input_expression);
let (permuted_table_poly, permuted_table_blind, permuted_table_commitment) =
commit_values(&permuted_table_expression);
transcript.write_point(permuted_input_commitment)?;
transcript.write_point(permuted_table_commitment)?;
let permuted_input_coset = coset_evaluator
.register_poly(pk.vk.domain.coeff_to_extended(permuted_input_poly.clone()));
let permuted_table_coset = coset_evaluator
.register_poly(pk.vk.domain.coeff_to_extended(permuted_table_poly.clone()));
Ok(Permuted {
unpermuted_input_expressions,
unpermuted_input_cosets,
permuted_input_expression,
permuted_input_poly,
permuted_input_coset,
permuted_input_blind,
unpermuted_table_expressions,
unpermuted_table_cosets,
permuted_table_expression,
permuted_table_poly,
permuted_table_coset,
permuted_table_blind,
})
}
}
impl<C: CurveAffine, Ev: Copy + Send + Sync> Permuted<C, Ev> {
pub(in crate::plonk) fn commit_product<
E: EncodedChallenge<C>,
R: RngCore,
T: TranscriptWrite<C, E>,
>(
self,
pk: &ProvingKey<C>,
params: &Params<C>,
theta: ChallengeTheta<C>,
beta: ChallengeBeta<C>,
gamma: ChallengeGamma<C>,
evaluator: &mut poly::Evaluator<Ev, C::Scalar, ExtendedLagrangeCoeff>,
mut rng: R,
transcript: &mut T,
) -> Result<Committed<C, Ev>, Error> {
let blinding_factors = pk.vk.cs.blinding_factors();
let mut lookup_product = vec![C::Scalar::zero(); params.n as usize];
parallelize(&mut lookup_product, |lookup_product, start| {
for ((lookup_product, permuted_input_value), permuted_table_value) in lookup_product
.iter_mut()
.zip(self.permuted_input_expression[start..].iter())
.zip(self.permuted_table_expression[start..].iter())
{
*lookup_product = (*beta + permuted_input_value) * &(*gamma + permuted_table_value);
}
});
lookup_product.iter_mut().batch_invert();
parallelize(&mut lookup_product, |product, start| {
for (i, product) in product.iter_mut().enumerate() {
let i = i + start;
let mut input_term = C::Scalar::zero();
for unpermuted_input_expression in self.unpermuted_input_expressions.iter() {
input_term *= &*theta;
input_term += &unpermuted_input_expression[i];
}
let mut table_term = C::Scalar::zero();
for unpermuted_table_expression in self.unpermuted_table_expressions.iter() {
table_term *= &*theta;
table_term += &unpermuted_table_expression[i];
}
*product *= &(input_term + &*beta);
*product *= &(table_term + &*gamma);
}
});
let z = iter::once(C::Scalar::one())
.chain(lookup_product)
.scan(C::Scalar::one(), |state, cur| {
*state *= &cur;
Some(*state)
})
.take(params.n as usize - blinding_factors)
.chain((0..blinding_factors).map(|_| C::Scalar::random(&mut rng)))
.collect::<Vec<_>>();
assert_eq!(z.len(), params.n as usize);
let z = pk.vk.domain.lagrange_from_vec(z);
#[cfg(feature = "sanity-checks")]
{
let u = (params.n as usize) - (blinding_factors + 1);
assert_eq!(z[0], C::Scalar::one());
for i in 0..u {
let mut left = z[i + 1];
let permuted_input_value = &self.permuted_input_expression[i];
let permuted_table_value = &self.permuted_table_expression[i];
left *= &(*beta + permuted_input_value);
left *= &(*gamma + permuted_table_value);
let mut right = z[i];
let mut input_term = self
.unpermuted_input_expressions
.iter()
.fold(C::Scalar::zero(), |acc, input| acc * &*theta + &input[i]);
let mut table_term = self
.unpermuted_table_expressions
.iter()
.fold(C::Scalar::zero(), |acc, table| acc * &*theta + &table[i]);
input_term += &(*beta);
table_term += &(*gamma);
right *= &(input_term * &table_term);
assert_eq!(left, right);
}
assert_eq!(z[u], C::Scalar::one());
}
let product_blind = Blind(C::Scalar::random(rng));
let product_commitment = params.commit_lagrange(&z, product_blind).to_affine();
let z = pk.vk.domain.lagrange_to_coeff(z);
let product_coset = evaluator.register_poly(pk.vk.domain.coeff_to_extended(z.clone()));
transcript.write_point(product_commitment)?;
Ok(Committed::<C, _> {
permuted: self,
product_poly: z,
product_coset,
product_blind,
})
}
}
impl<'a, C: CurveAffine, Ev: Copy + Send + Sync + 'a> Committed<C, Ev> {
pub(in crate::plonk) fn construct(
self,
theta: ChallengeTheta<C>,
beta: ChallengeBeta<C>,
gamma: ChallengeGamma<C>,
l0: poly::AstLeaf<Ev, ExtendedLagrangeCoeff>,
l_blind: poly::AstLeaf<Ev, ExtendedLagrangeCoeff>,
l_last: poly::AstLeaf<Ev, ExtendedLagrangeCoeff>,
) -> (
Constructed<C>,
impl Iterator<Item = poly::Ast<Ev, C::Scalar, ExtendedLagrangeCoeff>> + 'a,
) {
let permuted = self.permuted;
let active_rows = poly::Ast::one() - (poly::Ast::from(l_last) + l_blind);
let beta = poly::Ast::ConstantTerm(*beta);
let gamma = poly::Ast::ConstantTerm(*gamma);
let expressions = iter::empty()
.chain(Some((poly::Ast::one() - self.product_coset) * l0))
.chain(Some(
(poly::Ast::from(self.product_coset) * self.product_coset - self.product_coset)
* l_last,
))
.chain({
let left: poly::Ast<_, _, _> = poly::Ast::<_, C::Scalar, _>::from(
self.product_coset.with_rotation(Rotation::next()),
) * (poly::Ast::from(permuted.permuted_input_coset)
+ beta.clone())
* (poly::Ast::from(permuted.permuted_table_coset) + gamma.clone());
let compress_cosets = |cosets: &[poly::Ast<_, _, _>]| {
cosets.iter().fold(
poly::Ast::<_, _, ExtendedLagrangeCoeff>::ConstantTerm(C::Scalar::zero()),
|acc, eval| acc * poly::Ast::ConstantTerm(*theta) + eval.clone(),
)
};
let right: poly::Ast<_, _, _> = poly::Ast::from(self.product_coset)
* (compress_cosets(&permuted.unpermuted_input_cosets) + beta)
* (compress_cosets(&permuted.unpermuted_table_cosets) + gamma);
Some((left - right) * active_rows.clone())
})
.chain(Some(
(poly::Ast::from(permuted.permuted_input_coset) - permuted.permuted_table_coset)
* l0,
))
.chain(Some(
(poly::Ast::<_, C::Scalar, _>::from(permuted.permuted_input_coset)
- permuted.permuted_table_coset)
* (poly::Ast::from(permuted.permuted_input_coset)
- permuted
.permuted_input_coset
.with_rotation(Rotation::prev()))
* active_rows,
));
(
Constructed {
permuted_input_poly: permuted.permuted_input_poly,
permuted_input_blind: permuted.permuted_input_blind,
permuted_table_poly: permuted.permuted_table_poly,
permuted_table_blind: permuted.permuted_table_blind,
product_poly: self.product_poly,
product_blind: self.product_blind,
},
expressions,
)
}
}
impl<C: CurveAffine> Constructed<C> {
pub(in crate::plonk) fn evaluate<E: EncodedChallenge<C>, T: TranscriptWrite<C, E>>(
self,
pk: &ProvingKey<C>,
x: ChallengeX<C>,
transcript: &mut T,
) -> Result<Evaluated<C>, Error> {
let domain = &pk.vk.domain;
let x_inv = domain.rotate_omega(*x, Rotation::prev());
let x_next = domain.rotate_omega(*x, Rotation::next());
let product_eval = eval_polynomial(&self.product_poly, *x);
let product_next_eval = eval_polynomial(&self.product_poly, x_next);
let permuted_input_eval = eval_polynomial(&self.permuted_input_poly, *x);
let permuted_input_inv_eval = eval_polynomial(&self.permuted_input_poly, x_inv);
let permuted_table_eval = eval_polynomial(&self.permuted_table_poly, *x);
for eval in iter::empty()
.chain(Some(product_eval))
.chain(Some(product_next_eval))
.chain(Some(permuted_input_eval))
.chain(Some(permuted_input_inv_eval))
.chain(Some(permuted_table_eval))
{
transcript.write_scalar(eval)?;
}
Ok(Evaluated { constructed: self })
}
}
impl<C: CurveAffine> Evaluated<C> {
pub(in crate::plonk) fn open<'a>(
&'a self,
pk: &'a ProvingKey<C>,
x: ChallengeX<C>,
) -> impl Iterator<Item = ProverQuery<'a, C>> + Clone {
let x_inv = pk.vk.domain.rotate_omega(*x, Rotation::prev());
let x_next = pk.vk.domain.rotate_omega(*x, Rotation::next());
iter::empty()
.chain(Some(ProverQuery {
point: *x,
poly: &self.constructed.product_poly,
blind: self.constructed.product_blind,
}))
.chain(Some(ProverQuery {
point: *x,
poly: &self.constructed.permuted_input_poly,
blind: self.constructed.permuted_input_blind,
}))
.chain(Some(ProverQuery {
point: *x,
poly: &self.constructed.permuted_table_poly,
blind: self.constructed.permuted_table_blind,
}))
.chain(Some(ProverQuery {
point: x_inv,
poly: &self.constructed.permuted_input_poly,
blind: self.constructed.permuted_input_blind,
}))
.chain(Some(ProverQuery {
point: x_next,
poly: &self.constructed.product_poly,
blind: self.constructed.product_blind,
}))
}
}
type ExpressionPair<F> = (Polynomial<F, LagrangeCoeff>, Polynomial<F, LagrangeCoeff>);
fn permute_expression_pair<C: CurveAffine, R: RngCore>(
pk: &ProvingKey<C>,
params: &Params<C>,
domain: &EvaluationDomain<C::Scalar>,
mut rng: R,
input_expression: &Polynomial<C::Scalar, LagrangeCoeff>,
table_expression: &Polynomial<C::Scalar, LagrangeCoeff>,
) -> Result<ExpressionPair<C::Scalar>, Error> {
let blinding_factors = pk.vk.cs.blinding_factors();
let usable_rows = params.n as usize - (blinding_factors + 1);
let mut permuted_input_expression: Vec<C::Scalar> = input_expression.to_vec();
permuted_input_expression.truncate(usable_rows);
permuted_input_expression.sort();
let mut leftover_table_map: BTreeMap<C::Scalar, u32> = table_expression
.iter()
.take(usable_rows)
.fold(BTreeMap::new(), |mut acc, coeff| {
*acc.entry(*coeff).or_insert(0) += 1;
acc
});
let mut permuted_table_coeffs = vec![C::Scalar::zero(); usable_rows];
let mut repeated_input_rows = permuted_input_expression
.iter()
.zip(permuted_table_coeffs.iter_mut())
.enumerate()
.filter_map(|(row, (input_value, table_value))| {
if row == 0 || *input_value != permuted_input_expression[row - 1] {
*table_value = *input_value;
if let Some(count) = leftover_table_map.get_mut(input_value) {
assert!(*count > 0);
*count -= 1;
None
} else {
Some(Err(Error::ConstraintSystemFailure))
}
} else {
Some(Ok(row))
}
})
.collect::<Result<Vec<_>, _>>()?;
for (coeff, count) in leftover_table_map.iter() {
for _ in 0..*count {
permuted_table_coeffs[repeated_input_rows.pop().unwrap() as usize] = *coeff;
}
}
assert!(repeated_input_rows.is_empty());
permuted_input_expression
.extend((0..(blinding_factors + 1)).map(|_| C::Scalar::random(&mut rng)));
permuted_table_coeffs.extend((0..(blinding_factors + 1)).map(|_| C::Scalar::random(&mut rng)));
assert_eq!(permuted_input_expression.len(), params.n as usize);
assert_eq!(permuted_table_coeffs.len(), params.n as usize);
#[cfg(feature = "sanity-checks")]
{
let mut last = None;
for (a, b) in permuted_input_expression
.iter()
.zip(permuted_table_coeffs.iter())
.take(usable_rows)
{
if *a != *b {
assert_eq!(*a, last.unwrap());
}
last = Some(*a);
}
}
Ok((
domain.lagrange_from_vec(permuted_input_expression),
domain.lagrange_from_vec(permuted_table_coeffs),
))
}