allocator_api2/stable/
slice.rs

1use crate::{
2    alloc::{Allocator, Global},
3    vec::Vec,
4};
5
6/// Slice methods that use `Box` and `Vec` from this crate.
7pub trait SliceExt<T> {
8    /// Copies `self` into a new `Vec`.
9    ///
10    /// # Examples
11    ///
12    /// ```
13    /// let s = [10, 40, 30];
14    /// let x = s.to_vec();
15    /// // Here, `s` and `x` can be modified independently.
16    /// ```
17    #[cfg(not(no_global_oom_handling))]
18    #[inline(always)]
19    fn to_vec(&self) -> Vec<T, Global>
20    where
21        T: Clone,
22    {
23        self.to_vec_in(Global)
24    }
25
26    /// Copies `self` into a new `Vec` with an allocator.
27    ///
28    /// # Examples
29    ///
30    /// ```
31    /// #![feature(allocator_api)]
32    ///
33    /// use std::alloc::System;
34    ///
35    /// let s = [10, 40, 30];
36    /// let x = s.to_vec_in(System);
37    /// // Here, `s` and `x` can be modified independently.
38    /// ```
39    #[cfg(not(no_global_oom_handling))]
40    fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
41    where
42        T: Clone;
43
44    /// Creates a vector by copying a slice `n` times.
45    ///
46    /// # Panics
47    ///
48    /// This function will panic if the capacity would overflow.
49    ///
50    /// # Examples
51    ///
52    /// Basic usage:
53    ///
54    /// ```
55    /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
56    /// ```
57    ///
58    /// A panic upon overflow:
59    ///
60    /// ```should_panic
61    /// // this will panic at runtime
62    /// b"0123456789abcdef".repeat(usize::MAX);
63    /// ```
64    fn repeat(&self, n: usize) -> Vec<T, Global>
65    where
66        T: Copy;
67}
68
69impl<T> SliceExt<T> for [T] {
70    #[cfg(not(no_global_oom_handling))]
71    #[inline]
72    fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
73    where
74        T: Clone,
75    {
76        struct DropGuard<'a, T, A: Allocator> {
77            vec: &'a mut Vec<T, A>,
78            num_init: usize,
79        }
80        impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
81            #[inline]
82            fn drop(&mut self) {
83                // SAFETY:
84                // items were marked initialized in the loop below
85                unsafe {
86                    self.vec.set_len(self.num_init);
87                }
88            }
89        }
90
91        let mut vec = Vec::with_capacity_in(self.len(), alloc);
92        let mut guard = DropGuard {
93            vec: &mut vec,
94            num_init: 0,
95        };
96        let slots = guard.vec.spare_capacity_mut();
97        // .take(slots.len()) is necessary for LLVM to remove bounds checks
98        // and has better codegen than zip.
99        for (i, b) in self.iter().enumerate().take(slots.len()) {
100            guard.num_init = i;
101            slots[i].write(b.clone());
102        }
103        core::mem::forget(guard);
104        // SAFETY:
105        // the vec was allocated and initialized above to at least this length.
106        unsafe {
107            vec.set_len(self.len());
108        }
109        vec
110    }
111
112    #[cfg(not(no_global_oom_handling))]
113    #[inline]
114    fn repeat(&self, n: usize) -> Vec<T, Global>
115    where
116        T: Copy,
117    {
118        if n == 0 {
119            return Vec::new();
120        }
121
122        // If `n` is larger than zero, it can be split as
123        // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
124        // `2^expn` is the number represented by the leftmost '1' bit of `n`,
125        // and `rem` is the remaining part of `n`.
126
127        // Using `Vec` to access `set_len()`.
128        let capacity = self.len().checked_mul(n).expect("capacity overflow");
129        let mut buf = Vec::with_capacity(capacity);
130
131        // `2^expn` repetition is done by doubling `buf` `expn`-times.
132        buf.extend(self);
133        {
134            let mut m = n >> 1;
135            // If `m > 0`, there are remaining bits up to the leftmost '1'.
136            while m > 0 {
137                // `buf.extend(buf)`:
138                unsafe {
139                    core::ptr::copy_nonoverlapping(
140                        buf.as_ptr(),
141                        (buf.as_mut_ptr() as *mut T).add(buf.len()),
142                        buf.len(),
143                    );
144                    // `buf` has capacity of `self.len() * n`.
145                    let buf_len = buf.len();
146                    buf.set_len(buf_len * 2);
147                }
148
149                m >>= 1;
150            }
151        }
152
153        // `rem` (`= n - 2^expn`) repetition is done by copying
154        // first `rem` repetitions from `buf` itself.
155        let rem_len = capacity - buf.len(); // `self.len() * rem`
156        if rem_len > 0 {
157            // `buf.extend(buf[0 .. rem_len])`:
158            unsafe {
159                // This is non-overlapping since `2^expn > rem`.
160                core::ptr::copy_nonoverlapping(
161                    buf.as_ptr(),
162                    (buf.as_mut_ptr() as *mut T).add(buf.len()),
163                    rem_len,
164                );
165                // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
166                buf.set_len(capacity);
167            }
168        }
169        buf
170    }
171}