blake2b_simd/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
//! [![GitHub](https://img.shields.io/github/tag/oconnor663/blake2_simd.svg?label=GitHub)](https://github.com/oconnor663/blake2_simd) [![crates.io](https://img.shields.io/crates/v/blake2b_simd.svg)](https://crates.io/crates/blake2b_simd) [![Actions Status](https://github.com/oconnor663/blake2_simd/workflows/tests/badge.svg)](https://github.com/oconnor663/blake2_simd/actions)
//!
//! An implementation of the BLAKE2b and BLAKE2bp hash functions. See also
//! [`blake2s_simd`](https://docs.rs/blake2s_simd).
//!
//! This crate includes:
//!
//! - 100% stable Rust.
//! - SIMD implementations based on Samuel Neves' [`blake2-avx2`](https://github.com/sneves/blake2-avx2).
//! These are very fast. For benchmarks, see [the Performance section of the
//! README](https://github.com/oconnor663/blake2_simd#performance).
//! - Portable, safe implementations for other platforms.
//! - Dynamic CPU feature detection. Binaries include multiple implementations by default and
//! choose the fastest one the processor supports at runtime.
//! - All the features from the [the BLAKE2 spec](https://blake2.net/blake2.pdf), like adjustable
//! length, keying, and associated data for tree hashing.
//! - `no_std` support. The `std` Cargo feature is on by default, for CPU feature detection and
//! for implementing `std::io::Write`.
//! - Support for computing multiple BLAKE2b hashes in parallel, matching the efficiency of
//! BLAKE2bp. See the [`many`](many/index.html) module.
//!
//! # Example
//!
//! ```
//! use blake2b_simd::{blake2b, Params};
//!
//! let expected = "ca002330e69d3e6b84a46a56a6533fd79d51d97a3bb7cad6c2ff43b354185d6d\
//! c1e723fb3db4ae0737e120378424c714bb982d9dc5bbd7a0ab318240ddd18f8d";
//! let hash = blake2b(b"foo");
//! assert_eq!(expected, &hash.to_hex());
//!
//! let hash = Params::new()
//! .hash_length(16)
//! .key(b"The Magic Words are Squeamish Ossifrage")
//! .personal(b"L. P. Waterhouse")
//! .to_state()
//! .update(b"foo")
//! .update(b"bar")
//! .update(b"baz")
//! .finalize();
//! assert_eq!("ee8ff4e9be887297cf79348dc35dab56", &hash.to_hex());
//! ```
#![cfg_attr(not(feature = "std"), no_std)]
use arrayref::{array_refs, mut_array_refs};
use core::cmp;
use core::fmt;
use core::mem::size_of;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod avx2;
mod portable;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod sse41;
pub mod blake2bp;
mod guts;
pub mod many;
#[cfg(test)]
mod test;
type Word = u64;
type Count = u128;
/// The max hash length.
pub const OUTBYTES: usize = 8 * size_of::<Word>();
/// The max key length.
pub const KEYBYTES: usize = 8 * size_of::<Word>();
/// The max salt length.
pub const SALTBYTES: usize = 2 * size_of::<Word>();
/// The max personalization length.
pub const PERSONALBYTES: usize = 2 * size_of::<Word>();
/// The number input bytes passed to each call to the compression function. Small benchmarks need
/// to use an even multiple of `BLOCKBYTES`, or else their apparent throughput will be low.
pub const BLOCKBYTES: usize = 16 * size_of::<Word>();
const IV: [Word; 8] = [
0x6A09E667F3BCC908,
0xBB67AE8584CAA73B,
0x3C6EF372FE94F82B,
0xA54FF53A5F1D36F1,
0x510E527FADE682D1,
0x9B05688C2B3E6C1F,
0x1F83D9ABFB41BD6B,
0x5BE0CD19137E2179,
];
const SIGMA: [[u8; 16]; 12] = [
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
[14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3],
[11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4],
[7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8],
[9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13],
[2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9],
[12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11],
[13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10],
[6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5],
[10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
[14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3],
];
/// Compute the BLAKE2b hash of a slice of bytes all at once, using default
/// parameters.
///
/// # Example
///
/// ```
/// # use blake2b_simd::{blake2b, Params};
/// let expected = "ca002330e69d3e6b84a46a56a6533fd79d51d97a3bb7cad6c2ff43b354185d6d\
/// c1e723fb3db4ae0737e120378424c714bb982d9dc5bbd7a0ab318240ddd18f8d";
/// let hash = blake2b(b"foo");
/// assert_eq!(expected, &hash.to_hex());
/// ```
pub fn blake2b(input: &[u8]) -> Hash {
Params::new().hash(input)
}
/// A parameter builder that exposes all the non-default BLAKE2 features.
///
/// Apart from `hash_length`, which controls the length of the final `Hash`,
/// all of these parameters are just associated data that gets mixed with the
/// input. For more details, see [the BLAKE2 spec](https://blake2.net/blake2.pdf).
///
/// Several of the parameters have a valid range defined in the spec and
/// documented below. Trying to set an invalid parameter will panic.
///
/// # Example
///
/// ```
/// # use blake2b_simd::Params;
/// // Create a Params object with a secret key and a non-default length.
/// let mut params = Params::new();
/// params.key(b"my secret key");
/// params.hash_length(16);
///
/// // Use those params to hash an input all at once.
/// let hash = params.hash(b"my input");
///
/// // Or use those params to build an incremental State.
/// let mut state = params.to_state();
/// ```
#[derive(Clone)]
pub struct Params {
hash_length: u8,
key_length: u8,
key_block: [u8; BLOCKBYTES],
salt: [u8; SALTBYTES],
personal: [u8; PERSONALBYTES],
fanout: u8,
max_depth: u8,
max_leaf_length: u32,
node_offset: u64,
node_depth: u8,
inner_hash_length: u8,
last_node: guts::LastNode,
implementation: guts::Implementation,
}
impl Params {
/// Equivalent to `Params::default()`.
#[inline]
pub fn new() -> Self {
Self {
hash_length: OUTBYTES as u8,
key_length: 0,
key_block: [0; BLOCKBYTES],
salt: [0; SALTBYTES],
personal: [0; PERSONALBYTES],
// NOTE: fanout and max_depth don't default to zero!
fanout: 1,
max_depth: 1,
max_leaf_length: 0,
node_offset: 0,
node_depth: 0,
inner_hash_length: 0,
last_node: guts::LastNode::No,
implementation: guts::Implementation::detect(),
}
}
#[inline(always)]
fn to_words(&self) -> [Word; 8] {
let (salt_left, salt_right) = array_refs!(&self.salt, SALTBYTES / 2, SALTBYTES / 2);
let (personal_left, personal_right) =
array_refs!(&self.personal, PERSONALBYTES / 2, PERSONALBYTES / 2);
[
IV[0]
^ self.hash_length as u64
^ (self.key_length as u64) << 8
^ (self.fanout as u64) << 16
^ (self.max_depth as u64) << 24
^ (self.max_leaf_length as u64) << 32,
IV[1] ^ self.node_offset,
IV[2] ^ self.node_depth as u64 ^ (self.inner_hash_length as u64) << 8,
IV[3],
IV[4] ^ Word::from_le_bytes(*salt_left),
IV[5] ^ Word::from_le_bytes(*salt_right),
IV[6] ^ Word::from_le_bytes(*personal_left),
IV[7] ^ Word::from_le_bytes(*personal_right),
]
}
/// Hash an input all at once with these parameters.
#[inline]
pub fn hash(&self, input: &[u8]) -> Hash {
// If there's a key, just fall back to using the State.
if self.key_length > 0 {
return self.to_state().update(input).finalize();
}
let mut words = self.to_words();
self.implementation.compress1_loop(
input,
&mut words,
0,
self.last_node,
guts::Finalize::Yes,
guts::Stride::Serial,
);
Hash {
bytes: state_words_to_bytes(&words),
len: self.hash_length,
}
}
/// Construct a `State` object based on these parameters, for hashing input
/// incrementally.
pub fn to_state(&self) -> State {
State::with_params(self)
}
/// Set the length of the final hash in bytes, from 1 to `OUTBYTES` (64). Apart from
/// controlling the length of the final `Hash`, this is also associated data, and changing it
/// will result in a totally different hash.
#[inline]
pub fn hash_length(&mut self, length: usize) -> &mut Self {
assert!(
1 <= length && length <= OUTBYTES,
"Bad hash length: {}",
length
);
self.hash_length = length as u8;
self
}
/// Use a secret key, so that BLAKE2 acts as a MAC. The maximum key length is `KEYBYTES` (64).
/// An empty key is equivalent to having no key at all.
#[inline]
pub fn key(&mut self, key: &[u8]) -> &mut Self {
assert!(key.len() <= KEYBYTES, "Bad key length: {}", key.len());
self.key_length = key.len() as u8;
self.key_block = [0; BLOCKBYTES];
self.key_block[..key.len()].copy_from_slice(key);
self
}
/// At most `SALTBYTES` (16). Shorter salts are padded with null bytes. An empty salt is
/// equivalent to having no salt at all.
#[inline]
pub fn salt(&mut self, salt: &[u8]) -> &mut Self {
assert!(salt.len() <= SALTBYTES, "Bad salt length: {}", salt.len());
self.salt = [0; SALTBYTES];
self.salt[..salt.len()].copy_from_slice(salt);
self
}
/// At most `PERSONALBYTES` (16). Shorter personalizations are padded with null bytes. An empty
/// personalization is equivalent to having no personalization at all.
#[inline]
pub fn personal(&mut self, personalization: &[u8]) -> &mut Self {
assert!(
personalization.len() <= PERSONALBYTES,
"Bad personalization length: {}",
personalization.len()
);
self.personal = [0; PERSONALBYTES];
self.personal[..personalization.len()].copy_from_slice(personalization);
self
}
/// From 0 (meaning unlimited) to 255. The default is 1 (meaning sequential).
#[inline]
pub fn fanout(&mut self, fanout: u8) -> &mut Self {
self.fanout = fanout;
self
}
/// From 0 (meaning BLAKE2X B2 hashes), through 1 (the default, meaning sequential) to 255 (meaning unlimited).
#[inline]
pub fn max_depth(&mut self, depth: u8) -> &mut Self {
self.max_depth = depth;
self
}
/// From 0 (the default, meaning unlimited or sequential) to `2^32 - 1`.
#[inline]
pub fn max_leaf_length(&mut self, length: u32) -> &mut Self {
self.max_leaf_length = length;
self
}
/// From 0 (the default, meaning first, leftmost, leaf, or sequential) to `2^64 - 1`.
#[inline]
pub fn node_offset(&mut self, offset: u64) -> &mut Self {
self.node_offset = offset;
self
}
/// From 0 (the default, meaning leaf or sequential) to 255.
#[inline]
pub fn node_depth(&mut self, depth: u8) -> &mut Self {
self.node_depth = depth;
self
}
/// From 0 (the default, meaning sequential) to `OUTBYTES` (64).
#[inline]
pub fn inner_hash_length(&mut self, length: usize) -> &mut Self {
assert!(length <= OUTBYTES, "Bad inner hash length: {}", length);
self.inner_hash_length = length as u8;
self
}
/// Indicates the rightmost node in a row. This can also be changed on the
/// `State` object, potentially after hashing has begun. See
/// [`State::set_last_node`].
///
/// [`State::set_last_node`]: struct.State.html#method.set_last_node
#[inline]
pub fn last_node(&mut self, last_node: bool) -> &mut Self {
self.last_node = if last_node {
guts::LastNode::Yes
} else {
guts::LastNode::No
};
self
}
}
impl Default for Params {
fn default() -> Self {
Self::new()
}
}
impl fmt::Debug for Params {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"Params {{ hash_length: {}, key_length: {}, salt: {:?}, personal: {:?}, fanout: {}, \
max_depth: {}, max_leaf_length: {}, node_offset: {}, node_depth: {}, \
inner_hash_length: {}, last_node: {} }}",
self.hash_length,
// NB: Don't print the key itself. Debug shouldn't leak secrets.
self.key_length,
&self.salt,
&self.personal,
self.fanout,
self.max_depth,
self.max_leaf_length,
self.node_offset,
self.node_depth,
self.inner_hash_length,
self.last_node.yes(),
)
}
}
/// An incremental hasher for BLAKE2b.
///
/// To construct a `State` with non-default parameters, see `Params::to_state`.
///
/// # Example
///
/// ```
/// use blake2b_simd::{State, blake2b};
///
/// let mut state = blake2b_simd::State::new();
///
/// state.update(b"foo");
/// assert_eq!(blake2b(b"foo"), state.finalize());
///
/// state.update(b"bar");
/// assert_eq!(blake2b(b"foobar"), state.finalize());
/// ```
#[derive(Clone)]
pub struct State {
words: [Word; 8],
count: Count,
buf: [u8; BLOCKBYTES],
buflen: u8,
last_node: guts::LastNode,
hash_length: u8,
implementation: guts::Implementation,
is_keyed: bool,
}
impl State {
/// Equivalent to `State::default()` or `Params::default().to_state()`.
pub fn new() -> Self {
Self::with_params(&Params::default())
}
fn with_params(params: &Params) -> Self {
let mut state = Self {
words: params.to_words(),
count: 0,
buf: [0; BLOCKBYTES],
buflen: 0,
last_node: params.last_node,
hash_length: params.hash_length,
implementation: params.implementation,
is_keyed: params.key_length > 0,
};
if state.is_keyed {
state.buf = params.key_block;
state.buflen = state.buf.len() as u8;
}
state
}
fn fill_buf(&mut self, input: &mut &[u8]) {
let take = cmp::min(BLOCKBYTES - self.buflen as usize, input.len());
self.buf[self.buflen as usize..self.buflen as usize + take].copy_from_slice(&input[..take]);
self.buflen += take as u8;
*input = &input[take..];
}
// If the state already has some input in its buffer, try to fill the buffer and perform a
// compression. However, only do the compression if there's more input coming, otherwise it
// will give the wrong hash it the caller finalizes immediately after.
fn compress_buffer_if_possible(&mut self, input: &mut &[u8]) {
if self.buflen > 0 {
self.fill_buf(input);
if !input.is_empty() {
self.implementation.compress1_loop(
&self.buf,
&mut self.words,
self.count,
self.last_node,
guts::Finalize::No,
guts::Stride::Serial,
);
self.count = self.count.wrapping_add(BLOCKBYTES as Count);
self.buflen = 0;
}
}
}
/// Add input to the hash. You can call `update` any number of times.
pub fn update(&mut self, mut input: &[u8]) -> &mut Self {
// If we have a partial buffer, try to complete it.
self.compress_buffer_if_possible(&mut input);
// While there's more than a block of input left (which also means we cleared the buffer
// above), compress blocks directly without copying.
let mut end = input.len().saturating_sub(1);
end -= end % BLOCKBYTES;
if end > 0 {
self.implementation.compress1_loop(
&input[..end],
&mut self.words,
self.count,
self.last_node,
guts::Finalize::No,
guts::Stride::Serial,
);
self.count = self.count.wrapping_add(end as Count);
input = &input[end..];
}
// Buffer any remaining input, to be either compressed or finalized in a subsequent call.
// Note that this represents some copying overhead, which in theory we could avoid in
// all-at-once setting. A function hardcoded for exactly BLOCKSIZE input bytes is about 10%
// faster than using this implementation for the same input.
self.fill_buf(&mut input);
self
}
/// Finalize the state and return a `Hash`. This method is idempotent, and calling it multiple
/// times will give the same result. It's also possible to `update` with more input in between.
pub fn finalize(&self) -> Hash {
let mut words_copy = self.words;
self.implementation.compress1_loop(
&self.buf[..self.buflen as usize],
&mut words_copy,
self.count,
self.last_node,
guts::Finalize::Yes,
guts::Stride::Serial,
);
Hash {
bytes: state_words_to_bytes(&words_copy),
len: self.hash_length,
}
}
/// Set a flag indicating that this is the last node of its level in a tree hash. This is
/// equivalent to [`Params::last_node`], except that it can be set at any time before calling
/// `finalize`. That allows callers to begin hashing a node without knowing ahead of time
/// whether it's the last in its level. For more details about the intended use of this flag
/// [the BLAKE2 spec].
///
/// [`Params::last_node`]: struct.Params.html#method.last_node
/// [the BLAKE2 spec]: https://blake2.net/blake2.pdf
pub fn set_last_node(&mut self, last_node: bool) -> &mut Self {
self.last_node = if last_node {
guts::LastNode::Yes
} else {
guts::LastNode::No
};
self
}
/// Return the total number of bytes input so far.
///
/// Note that `count` doesn't include the bytes of the key block, if any.
/// It's exactly the total number of input bytes fed to `update`.
pub fn count(&self) -> Count {
let mut ret = self.count.wrapping_add(self.buflen as Count);
if self.is_keyed {
ret -= BLOCKBYTES as Count;
}
ret
}
}
#[inline(always)]
fn state_words_to_bytes(state_words: &[Word; 8]) -> [u8; OUTBYTES] {
let mut bytes = [0; OUTBYTES];
{
const W: usize = size_of::<Word>();
let refs = mut_array_refs!(&mut bytes, W, W, W, W, W, W, W, W);
*refs.0 = state_words[0].to_le_bytes();
*refs.1 = state_words[1].to_le_bytes();
*refs.2 = state_words[2].to_le_bytes();
*refs.3 = state_words[3].to_le_bytes();
*refs.4 = state_words[4].to_le_bytes();
*refs.5 = state_words[5].to_le_bytes();
*refs.6 = state_words[6].to_le_bytes();
*refs.7 = state_words[7].to_le_bytes();
}
bytes
}
#[cfg(feature = "std")]
impl std::io::Write for State {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
self.update(buf);
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
Ok(())
}
}
impl fmt::Debug for State {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// NB: Don't print the words. Leaking them would allow length extension.
write!(
f,
"State {{ count: {}, hash_length: {}, last_node: {} }}",
self.count(),
self.hash_length,
self.last_node.yes(),
)
}
}
impl Default for State {
fn default() -> Self {
Self::with_params(&Params::default())
}
}
type HexString = arrayvec::ArrayString<{ 2 * OUTBYTES }>;
/// A finalized BLAKE2 hash, with constant-time equality.
#[derive(Clone, Copy)]
pub struct Hash {
bytes: [u8; OUTBYTES],
len: u8,
}
impl Hash {
/// Convert the hash to a byte slice. Note that if you're using BLAKE2 as a MAC, you need
/// constant time equality, which `&[u8]` doesn't provide.
pub fn as_bytes(&self) -> &[u8] {
&self.bytes[..self.len as usize]
}
/// Convert the hash to a byte array. Note that if you're using BLAKE2 as a
/// MAC, you need constant time equality, which arrays don't provide. This
/// panics in debug mode if the length of the hash isn't `OUTBYTES`.
#[inline]
pub fn as_array(&self) -> &[u8; OUTBYTES] {
debug_assert_eq!(self.len as usize, OUTBYTES);
&self.bytes
}
/// Convert the hash to a lowercase hexadecimal
/// [`ArrayString`](https://docs.rs/arrayvec/0.7/arrayvec/struct.ArrayString.html).
pub fn to_hex(&self) -> HexString {
bytes_to_hex(self.as_bytes())
}
}
fn bytes_to_hex(bytes: &[u8]) -> HexString {
let mut s = arrayvec::ArrayString::new();
let table = b"0123456789abcdef";
for &b in bytes {
s.push(table[(b >> 4) as usize] as char);
s.push(table[(b & 0xf) as usize] as char);
}
s
}
impl From<[u8; OUTBYTES]> for Hash {
fn from(bytes: [u8; OUTBYTES]) -> Self {
Self {
bytes,
len: OUTBYTES as u8,
}
}
}
impl From<&[u8; OUTBYTES]> for Hash {
fn from(bytes: &[u8; OUTBYTES]) -> Self {
Self::from(*bytes)
}
}
/// This implementation is constant time, if the two hashes are the same length.
impl PartialEq for Hash {
fn eq(&self, other: &Hash) -> bool {
constant_time_eq::constant_time_eq(&self.as_bytes(), &other.as_bytes())
}
}
/// This implementation is constant time, if the slice is the same length as the hash.
impl PartialEq<[u8]> for Hash {
fn eq(&self, other: &[u8]) -> bool {
constant_time_eq::constant_time_eq(&self.as_bytes(), other)
}
}
impl Eq for Hash {}
impl AsRef<[u8]> for Hash {
fn as_ref(&self) -> &[u8] {
self.as_bytes()
}
}
impl fmt::Debug for Hash {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Hash(0x{})", self.to_hex())
}
}
// Paint a byte pattern that won't repeat, so that we don't accidentally miss
// buffer offset bugs. This is the same as what Bao uses in its tests.
#[cfg(test)]
fn paint_test_input(buf: &mut [u8]) {
let mut offset = 0;
let mut counter: u32 = 1;
while offset < buf.len() {
let bytes = counter.to_le_bytes();
let take = cmp::min(bytes.len(), buf.len() - offset);
buf[offset..][..take].copy_from_slice(&bytes[..take]);
counter += 1;
offset += take;
}
}
// This module is pub for internal benchmarks only. Please don't use it.
#[doc(hidden)]
pub mod benchmarks {
use super::*;
pub fn force_portable(params: &mut Params) {
params.implementation = guts::Implementation::portable();
}
pub fn force_portable_blake2bp(params: &mut blake2bp::Params) {
blake2bp::force_portable(params);
}
}