halo2_proofs/poly/commitment/
msm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
use super::Params;
use crate::arithmetic::{best_multiexp, parallelize, CurveAffine};
use ff::Field;
use group::Group;

/// A multiscalar multiplication in the polynomial commitment scheme
#[derive(Debug, Clone)]
pub struct MSM<'a, C: CurveAffine> {
    pub(crate) params: &'a Params<C>,
    g_scalars: Option<Vec<C::Scalar>>,
    w_scalar: Option<C::Scalar>,
    u_scalar: Option<C::Scalar>,
    other_scalars: Vec<C::Scalar>,
    other_bases: Vec<C>,
}

impl<'a, C: CurveAffine> MSM<'a, C> {
    /// Create a new, empty MSM using the provided parameters.
    pub fn new(params: &'a Params<C>) -> Self {
        let g_scalars = None;
        let w_scalar = None;
        let u_scalar = None;
        let other_scalars = vec![];
        let other_bases = vec![];

        MSM {
            params,
            g_scalars,
            w_scalar,
            u_scalar,
            other_scalars,
            other_bases,
        }
    }

    /// Add another multiexp into this one
    pub fn add_msm(&mut self, other: &Self) {
        self.other_scalars.extend(other.other_scalars.iter());
        self.other_bases.extend(other.other_bases.iter());

        if let Some(g_scalars) = &other.g_scalars {
            self.add_to_g_scalars(g_scalars);
        }

        if let Some(w_scalar) = &other.w_scalar {
            self.add_to_w_scalar(*w_scalar);
        }

        if let Some(u_scalar) = &other.u_scalar {
            self.add_to_u_scalar(*u_scalar);
        }
    }

    /// Add arbitrary term (the scalar and the point)
    pub fn append_term(&mut self, scalar: C::Scalar, point: C) {
        self.other_scalars.push(scalar);
        self.other_bases.push(point);
    }

    /// Add a value to the first entry of `g_scalars`.
    pub fn add_constant_term(&mut self, constant: C::Scalar) {
        if let Some(g_scalars) = self.g_scalars.as_mut() {
            g_scalars[0] += &constant;
        } else {
            let mut g_scalars = vec![C::Scalar::zero(); self.params.n as usize];
            g_scalars[0] += &constant;
            self.g_scalars = Some(g_scalars);
        }
    }

    /// Add a vector of scalars to `g_scalars`. This function will panic if the
    /// caller provides a slice of scalars that is not of length `params.n`.
    pub fn add_to_g_scalars(&mut self, scalars: &[C::Scalar]) {
        assert_eq!(scalars.len(), self.params.n as usize);
        if let Some(g_scalars) = &mut self.g_scalars {
            parallelize(g_scalars, |g_scalars, start| {
                for (g_scalar, scalar) in g_scalars.iter_mut().zip(scalars[start..].iter()) {
                    *g_scalar += scalar;
                }
            })
        } else {
            self.g_scalars = Some(scalars.to_vec());
        }
    }

    /// Add to `w_scalar`
    pub fn add_to_w_scalar(&mut self, scalar: C::Scalar) {
        self.w_scalar = self.w_scalar.map_or(Some(scalar), |a| Some(a + &scalar));
    }

    /// Add to `u_scalar`
    pub fn add_to_u_scalar(&mut self, scalar: C::Scalar) {
        self.u_scalar = self.u_scalar.map_or(Some(scalar), |a| Some(a + &scalar));
    }

    /// Scale all scalars in the MSM by some scaling factor
    pub fn scale(&mut self, factor: C::Scalar) {
        if let Some(g_scalars) = &mut self.g_scalars {
            parallelize(g_scalars, |g_scalars, _| {
                for g_scalar in g_scalars {
                    *g_scalar *= &factor;
                }
            })
        }

        if !self.other_scalars.is_empty() {
            parallelize(&mut self.other_scalars, |other_scalars, _| {
                for other_scalar in other_scalars {
                    *other_scalar *= &factor;
                }
            })
        }

        self.w_scalar = self.w_scalar.map(|a| a * &factor);
        self.u_scalar = self.u_scalar.map(|a| a * &factor);
    }

    /// Perform multiexp and check that it results in zero
    pub fn eval(self) -> bool {
        let len = self.g_scalars.as_ref().map(|v| v.len()).unwrap_or(0)
            + self.w_scalar.map(|_| 1).unwrap_or(0)
            + self.u_scalar.map(|_| 1).unwrap_or(0)
            + self.other_scalars.len();
        let mut scalars: Vec<C::Scalar> = Vec::with_capacity(len);
        let mut bases: Vec<C> = Vec::with_capacity(len);

        scalars.extend(&self.other_scalars);
        bases.extend(&self.other_bases);

        if let Some(w_scalar) = self.w_scalar {
            scalars.push(w_scalar);
            bases.push(self.params.w);
        }

        if let Some(u_scalar) = self.u_scalar {
            scalars.push(u_scalar);
            bases.push(self.params.u);
        }

        if let Some(g_scalars) = &self.g_scalars {
            scalars.extend(g_scalars);
            bases.extend(self.params.g.iter());
        }

        assert_eq!(scalars.len(), len);

        bool::from(best_multiexp(&scalars, &bases).is_identity())
    }
}