1use super::fp::*;
4use super::fp2::*;
5
6use core::fmt;
7use core::ops::{Add, Mul, Neg, Sub};
8use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
9
10use rand_core::RngCore;
11
12use crate::{
13 impl_add_binop_specify_output, impl_binops_additive, impl_binops_additive_specify_output,
14 impl_binops_multiplicative, impl_binops_multiplicative_mixed, impl_sub_binop_specify_output,
15};
16
17pub struct Fp6 {
19 pub c0: Fp2,
20 pub c1: Fp2,
21 pub c2: Fp2,
22}
23
24impl From<Fp> for Fp6 {
25 fn from(f: Fp) -> Fp6 {
26 Fp6 {
27 c0: Fp2::from(f),
28 c1: Fp2::zero(),
29 c2: Fp2::zero(),
30 }
31 }
32}
33
34impl From<Fp2> for Fp6 {
35 fn from(f: Fp2) -> Fp6 {
36 Fp6 {
37 c0: f,
38 c1: Fp2::zero(),
39 c2: Fp2::zero(),
40 }
41 }
42}
43
44impl Eq for Fp6 {}
45impl PartialEq for Fp6 {
46 fn eq(&self, other: &Fp6) -> bool {
47 self.ct_eq(other).into()
48 }
49}
50
51impl Copy for Fp6 {}
52impl Clone for Fp6 {
53 #[inline]
54 fn clone(&self) -> Self {
55 *self
56 }
57}
58
59impl Default for Fp6 {
60 fn default() -> Self {
61 Fp6::zero()
62 }
63}
64
65#[cfg(feature = "zeroize")]
66impl zeroize::DefaultIsZeroes for Fp6 {}
67
68impl fmt::Debug for Fp6 {
69 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
70 write!(f, "{:?} + ({:?})*v + ({:?})*v^2", self.c0, self.c1, self.c2)
71 }
72}
73
74impl ConditionallySelectable for Fp6 {
75 #[inline(always)]
76 fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
77 Fp6 {
78 c0: Fp2::conditional_select(&a.c0, &b.c0, choice),
79 c1: Fp2::conditional_select(&a.c1, &b.c1, choice),
80 c2: Fp2::conditional_select(&a.c2, &b.c2, choice),
81 }
82 }
83}
84
85impl ConstantTimeEq for Fp6 {
86 #[inline(always)]
87 fn ct_eq(&self, other: &Self) -> Choice {
88 self.c0.ct_eq(&other.c0) & self.c1.ct_eq(&other.c1) & self.c2.ct_eq(&other.c2)
89 }
90}
91
92impl Fp6 {
93 #[inline]
94 pub const fn zero() -> Self {
95 Fp6 {
96 c0: Fp2::zero(),
97 c1: Fp2::zero(),
98 c2: Fp2::zero(),
99 }
100 }
101
102 #[inline]
103 pub const fn one() -> Self {
104 Fp6 {
105 c0: Fp2::one(),
106 c1: Fp2::zero(),
107 c2: Fp2::zero(),
108 }
109 }
110
111 pub(crate) fn random(mut rng: impl RngCore) -> Self {
112 Fp6 {
113 c0: Fp2::random(&mut rng),
114 c1: Fp2::random(&mut rng),
115 c2: Fp2::random(&mut rng),
116 }
117 }
118
119 pub fn double(&self) -> Self {
120 Self {
121 c0: self.c0.double(),
122 c1: self.c1.double(),
123 c2: self.c2.double(),
124 }
125 }
126
127 pub fn mul_by_1(&self, c1: &Fp2) -> Fp6 {
128 Fp6 {
129 c0: (self.c2 * c1).mul_by_nonresidue(),
130 c1: self.c0 * c1,
131 c2: self.c1 * c1,
132 }
133 }
134
135 pub fn mul_by_01(&self, c0: &Fp2, c1: &Fp2) -> Fp6 {
136 let a_a = self.c0 * c0;
137 let b_b = self.c1 * c1;
138
139 let t1 = (self.c2 * c1).mul_by_nonresidue() + a_a;
140
141 let t2 = (c0 + c1) * (self.c0 + self.c1) - a_a - b_b;
142
143 let t3 = self.c2 * c0 + b_b;
144
145 Fp6 {
146 c0: t1,
147 c1: t2,
148 c2: t3,
149 }
150 }
151
152 pub fn mul_by_nonresidue(&self) -> Self {
154 Fp6 {
160 c0: self.c2.mul_by_nonresidue(),
161 c1: self.c0,
162 c2: self.c1,
163 }
164 }
165
166 #[inline(always)]
168 pub fn frobenius_map(&self) -> Self {
169 let c0 = self.c0.frobenius_map();
170 let c1 = self.c1.frobenius_map();
171 let c2 = self.c2.frobenius_map();
172
173 let c1 = c1
175 * Fp2 {
176 c0: Fp::zero(),
177 c1: Fp::from_raw_unchecked([
178 0xcd03_c9e4_8671_f071,
179 0x5dab_2246_1fcd_a5d2,
180 0x5870_42af_d385_1b95,
181 0x8eb6_0ebe_01ba_cb9e,
182 0x03f9_7d6e_83d0_50d2,
183 0x18f0_2065_5463_8741,
184 ]),
185 };
186
187 let c2 = c2
189 * Fp2 {
190 c0: Fp::from_raw_unchecked([
191 0x890d_c9e4_8675_45c3,
192 0x2af3_2253_3285_a5d5,
193 0x5088_0866_309b_7e2c,
194 0xa20d_1b8c_7e88_1024,
195 0x14e4_f04f_e2db_9068,
196 0x14e5_6d3f_1564_853a,
197 ]),
198 c1: Fp::zero(),
199 };
200
201 Fp6 { c0, c1, c2 }
202 }
203
204 #[inline(always)]
205 pub fn is_zero(&self) -> Choice {
206 self.c0.is_zero() & self.c1.is_zero() & self.c2.is_zero()
207 }
208
209 #[inline]
214 fn mul_interleaved(&self, b: &Self) -> Self {
215 let a = self;
251 let b10_p_b11 = b.c1.c0 + b.c1.c1;
252 let b10_m_b11 = b.c1.c0 - b.c1.c1;
253 let b20_p_b21 = b.c2.c0 + b.c2.c1;
254 let b20_m_b21 = b.c2.c0 - b.c2.c1;
255
256 Fp6 {
257 c0: Fp2 {
258 c0: Fp::sum_of_products(
259 [a.c0.c0, -a.c0.c1, a.c1.c0, -a.c1.c1, a.c2.c0, -a.c2.c1],
260 [b.c0.c0, b.c0.c1, b20_m_b21, b20_p_b21, b10_m_b11, b10_p_b11],
261 ),
262 c1: Fp::sum_of_products(
263 [a.c0.c0, a.c0.c1, a.c1.c0, a.c1.c1, a.c2.c0, a.c2.c1],
264 [b.c0.c1, b.c0.c0, b20_p_b21, b20_m_b21, b10_p_b11, b10_m_b11],
265 ),
266 },
267 c1: Fp2 {
268 c0: Fp::sum_of_products(
269 [a.c0.c0, -a.c0.c1, a.c1.c0, -a.c1.c1, a.c2.c0, -a.c2.c1],
270 [b.c1.c0, b.c1.c1, b.c0.c0, b.c0.c1, b20_m_b21, b20_p_b21],
271 ),
272 c1: Fp::sum_of_products(
273 [a.c0.c0, a.c0.c1, a.c1.c0, a.c1.c1, a.c2.c0, a.c2.c1],
274 [b.c1.c1, b.c1.c0, b.c0.c1, b.c0.c0, b20_p_b21, b20_m_b21],
275 ),
276 },
277 c2: Fp2 {
278 c0: Fp::sum_of_products(
279 [a.c0.c0, -a.c0.c1, a.c1.c0, -a.c1.c1, a.c2.c0, -a.c2.c1],
280 [b.c2.c0, b.c2.c1, b.c1.c0, b.c1.c1, b.c0.c0, b.c0.c1],
281 ),
282 c1: Fp::sum_of_products(
283 [a.c0.c0, a.c0.c1, a.c1.c0, a.c1.c1, a.c2.c0, a.c2.c1],
284 [b.c2.c1, b.c2.c0, b.c1.c1, b.c1.c0, b.c0.c1, b.c0.c0],
285 ),
286 },
287 }
288 }
289
290 #[inline]
291 pub fn square(&self) -> Self {
292 let s0 = self.c0.square();
293 let ab = self.c0 * self.c1;
294 let s1 = ab + ab;
295 let s2 = (self.c0 - self.c1 + self.c2).square();
296 let bc = self.c1 * self.c2;
297 let s3 = bc + bc;
298 let s4 = self.c2.square();
299
300 Fp6 {
301 c0: s3.mul_by_nonresidue() + s0,
302 c1: s4.mul_by_nonresidue() + s1,
303 c2: s1 + s2 + s3 - s0 - s4,
304 }
305 }
306
307 #[inline]
308 pub fn invert(&self) -> CtOption<Self> {
309 let c0 = (self.c1 * self.c2).mul_by_nonresidue();
310 let c0 = self.c0.square() - c0;
311
312 let c1 = self.c2.square().mul_by_nonresidue();
313 let c1 = c1 - (self.c0 * self.c1);
314
315 let c2 = self.c1.square();
316 let c2 = c2 - (self.c0 * self.c2);
317
318 let tmp = ((self.c1 * c2) + (self.c2 * c1)).mul_by_nonresidue();
319 let tmp = tmp + (self.c0 * c0);
320
321 tmp.invert().map(|t| Fp6 {
322 c0: t * c0,
323 c1: t * c1,
324 c2: t * c2,
325 })
326 }
327}
328
329impl<'a, 'b> Mul<&'b Fp6> for &'a Fp6 {
330 type Output = Fp6;
331
332 #[inline]
333 fn mul(self, other: &'b Fp6) -> Self::Output {
334 self.mul_interleaved(other)
335 }
336}
337
338impl<'a, 'b> Add<&'b Fp6> for &'a Fp6 {
339 type Output = Fp6;
340
341 #[inline]
342 fn add(self, rhs: &'b Fp6) -> Self::Output {
343 Fp6 {
344 c0: self.c0 + rhs.c0,
345 c1: self.c1 + rhs.c1,
346 c2: self.c2 + rhs.c2,
347 }
348 }
349}
350
351impl<'a> Neg for &'a Fp6 {
352 type Output = Fp6;
353
354 #[inline]
355 fn neg(self) -> Self::Output {
356 Fp6 {
357 c0: -self.c0,
358 c1: -self.c1,
359 c2: -self.c2,
360 }
361 }
362}
363
364impl Neg for Fp6 {
365 type Output = Fp6;
366
367 #[inline]
368 fn neg(self) -> Self::Output {
369 -&self
370 }
371}
372
373impl<'a, 'b> Sub<&'b Fp6> for &'a Fp6 {
374 type Output = Fp6;
375
376 #[inline]
377 fn sub(self, rhs: &'b Fp6) -> Self::Output {
378 Fp6 {
379 c0: self.c0 - rhs.c0,
380 c1: self.c1 - rhs.c1,
381 c2: self.c2 - rhs.c2,
382 }
383 }
384}
385
386impl_binops_additive!(Fp6, Fp6);
387impl_binops_multiplicative!(Fp6, Fp6);
388
389#[test]
390fn test_arithmetic() {
391 use super::fp::*;
392
393 let a = Fp6 {
394 c0: Fp2 {
395 c0: Fp::from_raw_unchecked([
396 0x47f9_cb98_b1b8_2d58,
397 0x5fe9_11eb_a3aa_1d9d,
398 0x96bf_1b5f_4dd8_1db3,
399 0x8100_d27c_c925_9f5b,
400 0xafa2_0b96_7464_0eab,
401 0x09bb_cea7_d8d9_497d,
402 ]),
403 c1: Fp::from_raw_unchecked([
404 0x0303_cb98_b166_2daa,
405 0xd931_10aa_0a62_1d5a,
406 0xbfa9_820c_5be4_a468,
407 0x0ba3_643e_cb05_a348,
408 0xdc35_34bb_1f1c_25a6,
409 0x06c3_05bb_19c0_e1c1,
410 ]),
411 },
412 c1: Fp2 {
413 c0: Fp::from_raw_unchecked([
414 0x46f9_cb98_b162_d858,
415 0x0be9_109c_f7aa_1d57,
416 0xc791_bc55_fece_41d2,
417 0xf84c_5770_4e38_5ec2,
418 0xcb49_c1d9_c010_e60f,
419 0x0acd_b8e1_58bf_e3c8,
420 ]),
421 c1: Fp::from_raw_unchecked([
422 0x8aef_cb98_b15f_8306,
423 0x3ea1_108f_e4f2_1d54,
424 0xcf79_f69f_a1b7_df3b,
425 0xe4f5_4aa1_d16b_1a3c,
426 0xba5e_4ef8_6105_a679,
427 0x0ed8_6c07_97be_e5cf,
428 ]),
429 },
430 c2: Fp2 {
431 c0: Fp::from_raw_unchecked([
432 0xcee5_cb98_b15c_2db4,
433 0x7159_1082_d23a_1d51,
434 0xd762_30e9_44a1_7ca4,
435 0xd19e_3dd3_549d_d5b6,
436 0xa972_dc17_01fa_66e3,
437 0x12e3_1f2d_d6bd_e7d6,
438 ]),
439 c1: Fp::from_raw_unchecked([
440 0xad2a_cb98_b173_2d9d,
441 0x2cfd_10dd_0696_1d64,
442 0x0739_6b86_c6ef_24e8,
443 0xbd76_e2fd_b1bf_c820,
444 0x6afe_a7f6_de94_d0d5,
445 0x1099_4b0c_5744_c040,
446 ]),
447 },
448 };
449
450 let b = Fp6 {
451 c0: Fp2 {
452 c0: Fp::from_raw_unchecked([
453 0xf120_cb98_b16f_d84b,
454 0x5fb5_10cf_f3de_1d61,
455 0x0f21_a5d0_69d8_c251,
456 0xaa1f_d62f_34f2_839a,
457 0x5a13_3515_7f89_913f,
458 0x14a3_fe32_9643_c247,
459 ]),
460 c1: Fp::from_raw_unchecked([
461 0x3516_cb98_b16c_82f9,
462 0x926d_10c2_e126_1d5f,
463 0x1709_e01a_0cc2_5fba,
464 0x96c8_c960_b825_3f14,
465 0x4927_c234_207e_51a9,
466 0x18ae_b158_d542_c44e,
467 ]),
468 },
469 c1: Fp2 {
470 c0: Fp::from_raw_unchecked([
471 0xbf0d_cb98_b169_82fc,
472 0xa679_10b7_1d1a_1d5c,
473 0xb7c1_47c2_b8fb_06ff,
474 0x1efa_710d_47d2_e7ce,
475 0xed20_a79c_7e27_653c,
476 0x02b8_5294_dac1_dfba,
477 ]),
478 c1: Fp::from_raw_unchecked([
479 0x9d52_cb98_b180_82e5,
480 0x621d_1111_5176_1d6f,
481 0xe798_8260_3b48_af43,
482 0x0ad3_1637_a4f4_da37,
483 0xaeac_737c_5ac1_cf2e,
484 0x006e_7e73_5b48_b824,
485 ]),
486 },
487 c2: Fp2 {
488 c0: Fp::from_raw_unchecked([
489 0xe148_cb98_b17d_2d93,
490 0x94d5_1104_3ebe_1d6c,
491 0xef80_bca9_de32_4cac,
492 0xf77c_0969_2827_95b1,
493 0x9dc1_009a_fbb6_8f97,
494 0x0479_3199_9a47_ba2b,
495 ]),
496 c1: Fp::from_raw_unchecked([
497 0x253e_cb98_b179_d841,
498 0xc78d_10f7_2c06_1d6a,
499 0xf768_f6f3_811b_ea15,
500 0xe424_fc9a_ab5a_512b,
501 0x8cd5_8db9_9cab_5001,
502 0x0883_e4bf_d946_bc32,
503 ]),
504 },
505 };
506
507 let c = Fp6 {
508 c0: Fp2 {
509 c0: Fp::from_raw_unchecked([
510 0x6934_cb98_b176_82ef,
511 0xfa45_10ea_194e_1d67,
512 0xff51_313d_2405_877e,
513 0xd0cd_efcc_2e8d_0ca5,
514 0x7bea_1ad8_3da0_106b,
515 0x0c8e_97e6_1845_be39,
516 ]),
517 c1: Fp::from_raw_unchecked([
518 0x4779_cb98_b18d_82d8,
519 0xb5e9_1144_4daa_1d7a,
520 0x2f28_6bda_a653_2fc2,
521 0xbca6_94f6_8bae_ff0f,
522 0x3d75_e6b8_1a3a_7a5d,
523 0x0a44_c3c4_98cc_96a3,
524 ]),
525 },
526 c1: Fp2 {
527 c0: Fp::from_raw_unchecked([
528 0x8b6f_cb98_b18a_2d86,
529 0xe8a1_1137_3af2_1d77,
530 0x3710_a624_493c_cd2b,
531 0xa94f_8828_0ee1_ba89,
532 0x2c8a_73d6_bb2f_3ac7,
533 0x0e4f_76ea_d7cb_98aa,
534 ]),
535 c1: Fp::from_raw_unchecked([
536 0xcf65_cb98_b186_d834,
537 0x1b59_112a_283a_1d74,
538 0x3ef8_e06d_ec26_6a95,
539 0x95f8_7b59_9214_7603,
540 0x1b9f_00f5_5c23_fb31,
541 0x125a_2a11_16ca_9ab1,
542 ]),
543 },
544 c2: Fp2 {
545 c0: Fp::from_raw_unchecked([
546 0x135b_cb98_b183_82e2,
547 0x4e11_111d_1582_1d72,
548 0x46e1_1ab7_8f10_07fe,
549 0x82a1_6e8b_1547_317d,
550 0x0ab3_8e13_fd18_bb9b,
551 0x1664_dd37_55c9_9cb8,
552 ]),
553 c1: Fp::from_raw_unchecked([
554 0xce65_cb98_b131_8334,
555 0xc759_0fdb_7c3a_1d2e,
556 0x6fcb_8164_9d1c_8eb3,
557 0x0d44_004d_1727_356a,
558 0x3746_b738_a7d0_d296,
559 0x136c_144a_96b1_34fc,
560 ]),
561 },
562 };
563
564 assert_eq!(a.square(), a * a);
565 assert_eq!(b.square(), b * b);
566 assert_eq!(c.square(), c * c);
567
568 assert_eq!((a + b) * c.square(), (c * c * a) + (c * c * b));
569
570 assert_eq!(
571 a.invert().unwrap() * b.invert().unwrap(),
572 (a * b).invert().unwrap()
573 );
574 assert_eq!(a.invert().unwrap() * a, Fp6::one());
575}
576
577#[cfg(feature = "zeroize")]
578#[test]
579fn test_zeroize() {
580 use zeroize::Zeroize;
581
582 let mut a = Fp6::one();
583 a.zeroize();
584 assert!(bool::from(a.is_zero()));
585}