halo2_proofs/
poly.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//! Contains utilities for performing arithmetic over univariate polynomials in
//! various forms, including computing commitments to them and provably opening
//! the committed polynomials at arbitrary points.

use crate::arithmetic::parallelize;
use crate::plonk::Assigned;

use group::ff::{BatchInvert, Field};
use pasta_curves::arithmetic::FieldExt;
use std::fmt::Debug;
use std::marker::PhantomData;
use std::ops::{Add, Deref, DerefMut, Index, IndexMut, Mul, RangeFrom, RangeFull};

pub mod commitment;
mod domain;
mod evaluator;
pub mod multiopen;

pub use domain::*;
pub use evaluator::*;

/// This is an error that could occur during proving or circuit synthesis.
// TODO: these errors need to be cleaned up
#[derive(Debug)]
pub enum Error {
    /// OpeningProof is not well-formed
    OpeningError,
    /// Caller needs to re-sample a point
    SamplingError,
}

/// The basis over which a polynomial is described.
pub trait Basis: Copy + Debug + Send + Sync {}

/// The polynomial is defined as coefficients
#[derive(Clone, Copy, Debug)]
pub struct Coeff;
impl Basis for Coeff {}

/// The polynomial is defined as coefficients of Lagrange basis polynomials
#[derive(Clone, Copy, Debug)]
pub struct LagrangeCoeff;
impl Basis for LagrangeCoeff {}

/// The polynomial is defined as coefficients of Lagrange basis polynomials in
/// an extended size domain which supports multiplication
#[derive(Clone, Copy, Debug)]
pub struct ExtendedLagrangeCoeff;
impl Basis for ExtendedLagrangeCoeff {}

/// Represents a univariate polynomial defined over a field and a particular
/// basis.
#[derive(Clone, Debug)]
pub struct Polynomial<F, B> {
    values: Vec<F>,
    _marker: PhantomData<B>,
}

impl<F, B> Index<usize> for Polynomial<F, B> {
    type Output = F;

    fn index(&self, index: usize) -> &F {
        self.values.index(index)
    }
}

impl<F, B> IndexMut<usize> for Polynomial<F, B> {
    fn index_mut(&mut self, index: usize) -> &mut F {
        self.values.index_mut(index)
    }
}

impl<F, B> Index<RangeFrom<usize>> for Polynomial<F, B> {
    type Output = [F];

    fn index(&self, index: RangeFrom<usize>) -> &[F] {
        self.values.index(index)
    }
}

impl<F, B> IndexMut<RangeFrom<usize>> for Polynomial<F, B> {
    fn index_mut(&mut self, index: RangeFrom<usize>) -> &mut [F] {
        self.values.index_mut(index)
    }
}

impl<F, B> Index<RangeFull> for Polynomial<F, B> {
    type Output = [F];

    fn index(&self, index: RangeFull) -> &[F] {
        self.values.index(index)
    }
}

impl<F, B> IndexMut<RangeFull> for Polynomial<F, B> {
    fn index_mut(&mut self, index: RangeFull) -> &mut [F] {
        self.values.index_mut(index)
    }
}

impl<F, B> Deref for Polynomial<F, B> {
    type Target = [F];

    fn deref(&self) -> &[F] {
        &self.values[..]
    }
}

impl<F, B> DerefMut for Polynomial<F, B> {
    fn deref_mut(&mut self) -> &mut [F] {
        &mut self.values[..]
    }
}

impl<F, B> Polynomial<F, B> {
    /// Iterate over the values, which are either in coefficient or evaluation
    /// form depending on the basis `B`.
    pub fn iter(&self) -> impl Iterator<Item = &F> {
        self.values.iter()
    }

    /// Iterate over the values mutably, which are either in coefficient or
    /// evaluation form depending on the basis `B`.
    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut F> {
        self.values.iter_mut()
    }

    /// Gets the size of this polynomial in terms of the number of
    /// coefficients used to describe it.
    pub fn num_coeffs(&self) -> usize {
        self.values.len()
    }
}

pub(crate) fn batch_invert_assigned<F: FieldExt>(
    assigned: Vec<Polynomial<Assigned<F>, LagrangeCoeff>>,
) -> Vec<Polynomial<F, LagrangeCoeff>> {
    let mut assigned_denominators: Vec<_> = assigned
        .iter()
        .map(|f| {
            f.iter()
                .map(|value| value.denominator())
                .collect::<Vec<_>>()
        })
        .collect();

    assigned_denominators
        .iter_mut()
        .flat_map(|f| {
            f.iter_mut()
                // If the denominator is trivial, we can skip it, reducing the
                // size of the batch inversion.
                .filter_map(|d| d.as_mut())
        })
        .batch_invert();

    assigned
        .iter()
        .zip(assigned_denominators.into_iter())
        .map(|(poly, inv_denoms)| {
            poly.invert(inv_denoms.into_iter().map(|d| d.unwrap_or_else(F::one)))
        })
        .collect()
}

impl<F: Field> Polynomial<Assigned<F>, LagrangeCoeff> {
    pub(crate) fn invert(
        &self,
        inv_denoms: impl Iterator<Item = F> + ExactSizeIterator,
    ) -> Polynomial<F, LagrangeCoeff> {
        assert_eq!(inv_denoms.len(), self.values.len());
        Polynomial {
            values: self
                .values
                .iter()
                .zip(inv_denoms.into_iter())
                .map(|(a, inv_den)| a.numerator() * inv_den)
                .collect(),
            _marker: self._marker,
        }
    }
}

impl<'a, F: Field, B: Basis> Add<&'a Polynomial<F, B>> for Polynomial<F, B> {
    type Output = Polynomial<F, B>;

    fn add(mut self, rhs: &'a Polynomial<F, B>) -> Polynomial<F, B> {
        parallelize(&mut self.values, |lhs, start| {
            for (lhs, rhs) in lhs.iter_mut().zip(rhs.values[start..].iter()) {
                *lhs += *rhs;
            }
        });

        self
    }
}

impl<'a, F: Field> Polynomial<F, LagrangeCoeff> {
    /// Rotates the values in a Lagrange basis polynomial by `Rotation`
    pub fn rotate(&self, rotation: Rotation) -> Polynomial<F, LagrangeCoeff> {
        let mut values = self.values.clone();
        if rotation.0 < 0 {
            values.rotate_right((-rotation.0) as usize);
        } else {
            values.rotate_left(rotation.0 as usize);
        }
        Polynomial {
            values,
            _marker: PhantomData,
        }
    }
}

impl<'a, F: Field, B: Basis> Mul<F> for Polynomial<F, B> {
    type Output = Polynomial<F, B>;

    fn mul(mut self, rhs: F) -> Polynomial<F, B> {
        parallelize(&mut self.values, |lhs, _| {
            for lhs in lhs.iter_mut() {
                *lhs *= rhs;
            }
        });

        self
    }
}

/// Describes the relative rotation of a vector. Negative numbers represent
/// reverse (leftmost) rotations and positive numbers represent forward (rightmost)
/// rotations. Zero represents no rotation.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Rotation(pub i32);

impl Rotation {
    /// The current location in the evaluation domain
    pub fn cur() -> Rotation {
        Rotation(0)
    }

    /// The previous location in the evaluation domain
    pub fn prev() -> Rotation {
        Rotation(-1)
    }

    /// The next location in the evaluation domain
    pub fn next() -> Rotation {
        Rotation(1)
    }
}