k256/arithmetic/
field.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
//! Field arithmetic modulo p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1

#![allow(clippy::assign_op_pattern, clippy::op_ref)]

use cfg_if::cfg_if;

cfg_if! {
    if #[cfg(target_pointer_width = "32")] {
        mod field_10x26;
    } else if #[cfg(target_pointer_width = "64")] {
        mod field_5x52;
    } else {
        compile_error!("unsupported target word size (i.e. target_pointer_width)");
    }
}

cfg_if! {
    if #[cfg(debug_assertions)] {
        mod field_impl;
        use field_impl::FieldElementImpl;
    } else {
        cfg_if! {
            if #[cfg(target_pointer_width = "32")] {
                use field_10x26::FieldElement10x26 as FieldElementImpl;
            } else if #[cfg(target_pointer_width = "64")] {
                use field_5x52::FieldElement5x52 as FieldElementImpl;
            } else {
                compile_error!("unsupported target word size (i.e. target_pointer_width)");
            }
        }
    }
}

use crate::FieldBytes;
use core::{
    iter::{Product, Sum},
    ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign},
};
use elliptic_curve::{
    ff::{self, Field, PrimeField},
    ops::Invert,
    rand_core::RngCore,
    subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption},
    zeroize::DefaultIsZeroes,
};

#[cfg(test)]
use num_bigint::{BigUint, ToBigUint};

/// An element in the finite field used for curve coordinates.
#[derive(Clone, Copy, Debug)]
pub struct FieldElement(FieldElementImpl);

impl FieldElement {
    /// Zero element.
    pub const ZERO: Self = Self(FieldElementImpl::ZERO);

    /// Multiplicative identity.
    pub const ONE: Self = Self(FieldElementImpl::ONE);

    /// Determine if this `FieldElement` is zero.
    ///
    /// # Returns
    ///
    /// If zero, return `Choice(1)`.  Otherwise, return `Choice(0)`.
    pub fn is_zero(&self) -> Choice {
        self.0.is_zero()
    }

    /// Determine if this `FieldElement` is even in the SEC1 sense: `self mod 2 == 0`.
    ///
    /// # Returns
    ///
    /// If even, return `Choice(1)`.  Otherwise, return `Choice(0)`.
    pub fn is_even(&self) -> Choice {
        !self.0.is_odd()
    }

    /// Determine if this `FieldElement` is odd in the SEC1 sense: `self mod 2 == 1`.
    ///
    /// # Returns
    ///
    /// If odd, return `Choice(1)`.  Otherwise, return `Choice(0)`.
    pub fn is_odd(&self) -> Choice {
        self.0.is_odd()
    }

    /// Attempts to parse the given byte array as an SEC1-encoded field element.
    /// Does not check the result for being in the correct range.
    pub(crate) const fn from_bytes_unchecked(bytes: &[u8; 32]) -> Self {
        Self(FieldElementImpl::from_bytes_unchecked(bytes))
    }

    /// Attempts to parse the given byte array as an SEC1-encoded field element.
    ///
    /// Returns None if the byte array does not contain a big-endian integer in the range
    /// [0, p).
    pub fn from_bytes(bytes: &FieldBytes) -> CtOption<Self> {
        FieldElementImpl::from_bytes(bytes).map(Self)
    }

    /// Convert a `u64` to a field element.
    pub const fn from_u64(w: u64) -> Self {
        Self(FieldElementImpl::from_u64(w))
    }

    /// Returns the SEC1 encoding of this field element.
    pub fn to_bytes(self) -> FieldBytes {
        self.0.normalize().to_bytes()
    }

    /// Returns -self, treating it as a value of given magnitude.
    /// The provided magnitude must be equal or greater than the actual magnitude of `self`.
    pub fn negate(&self, magnitude: u32) -> Self {
        Self(self.0.negate(magnitude))
    }

    /// Fully normalizes the field element.
    /// Brings the magnitude to 1 and modulo reduces the value.
    pub fn normalize(&self) -> Self {
        Self(self.0.normalize())
    }

    /// Weakly normalizes the field element.
    /// Brings the magnitude to 1, but does not guarantee the value to be less than the modulus.
    pub fn normalize_weak(&self) -> Self {
        Self(self.0.normalize_weak())
    }

    /// Checks if the field element becomes zero if normalized.
    pub fn normalizes_to_zero(&self) -> Choice {
        self.0.normalizes_to_zero()
    }

    /// Multiplies by a single-limb integer.
    /// Multiplies the magnitude by the same value.
    pub fn mul_single(&self, rhs: u32) -> Self {
        Self(self.0.mul_single(rhs))
    }

    /// Returns 2*self.
    /// Doubles the magnitude.
    pub fn double(&self) -> Self {
        Self(self.0.add(&(self.0)))
    }

    /// Returns self * rhs mod p
    /// Brings the magnitude to 1 (but doesn't normalize the result).
    /// The magnitudes of arguments should be <= 8.
    pub fn mul(&self, rhs: &Self) -> Self {
        Self(self.0.mul(&(rhs.0)))
    }

    /// Returns self * self.
    ///
    /// Brings the magnitude to 1 (but doesn't normalize the result).
    /// The magnitudes of arguments should be <= 8.
    pub fn square(&self) -> Self {
        Self(self.0.square())
    }

    /// Raises the scalar to the power `2^k`
    fn pow2k(&self, k: usize) -> Self {
        let mut x = *self;
        for _j in 0..k {
            x = x.square();
        }
        x
    }

    /// Returns the multiplicative inverse of self, if self is non-zero.
    /// The result has magnitude 1, but is not normalized.
    pub fn invert(&self) -> CtOption<Self> {
        // The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
        // { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
        // [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]

        let x2 = self.pow2k(1).mul(self);
        let x3 = x2.pow2k(1).mul(self);
        let x6 = x3.pow2k(3).mul(&x3);
        let x9 = x6.pow2k(3).mul(&x3);
        let x11 = x9.pow2k(2).mul(&x2);
        let x22 = x11.pow2k(11).mul(&x11);
        let x44 = x22.pow2k(22).mul(&x22);
        let x88 = x44.pow2k(44).mul(&x44);
        let x176 = x88.pow2k(88).mul(&x88);
        let x220 = x176.pow2k(44).mul(&x44);
        let x223 = x220.pow2k(3).mul(&x3);

        // The final result is then assembled using a sliding window over the blocks.
        let res = x223
            .pow2k(23)
            .mul(&x22)
            .pow2k(5)
            .mul(self)
            .pow2k(3)
            .mul(&x2)
            .pow2k(2)
            .mul(self);

        CtOption::new(res, !self.normalizes_to_zero())
    }

    /// Returns the square root of self mod p, or `None` if no square root exists.
    /// The result has magnitude 1, but is not normalized.
    pub fn sqrt(&self) -> CtOption<Self> {
        /*
        Given that p is congruent to 3 mod 4, we can compute the square root of
        a mod p as the (p+1)/4'th power of a.

        As (p+1)/4 is an even number, it will have the same result for a and for
        (-a). Only one of these two numbers actually has a square root however,
        so we test at the end by squaring and comparing to the input.
        Also because (p+1)/4 is an even number, the computed square root is
        itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
        */

        // The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
        // { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
        // 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]

        let x2 = self.pow2k(1).mul(self);
        let x3 = x2.pow2k(1).mul(self);
        let x6 = x3.pow2k(3).mul(&x3);
        let x9 = x6.pow2k(3).mul(&x3);
        let x11 = x9.pow2k(2).mul(&x2);
        let x22 = x11.pow2k(11).mul(&x11);
        let x44 = x22.pow2k(22).mul(&x22);
        let x88 = x44.pow2k(44).mul(&x44);
        let x176 = x88.pow2k(88).mul(&x88);
        let x220 = x176.pow2k(44).mul(&x44);
        let x223 = x220.pow2k(3).mul(&x3);

        // The final result is then assembled using a sliding window over the blocks.
        let res = x223.pow2k(23).mul(&x22).pow2k(6).mul(&x2).pow2k(2);

        let is_root = (res.mul(&res).negate(1) + self).normalizes_to_zero();

        // Only return Some if it's the square root.
        CtOption::new(res, is_root)
    }

    #[cfg(test)]
    pub fn modulus_as_biguint() -> BigUint {
        Self::ONE.negate(1).to_biguint().unwrap() + 1.to_biguint().unwrap()
    }
}

impl Invert for FieldElement {
    type Output = CtOption<Self>;

    fn invert(&self) -> CtOption<Self> {
        self.invert()
    }
}

impl Field for FieldElement {
    const ZERO: Self = Self::ZERO;
    const ONE: Self = Self::ONE;

    fn random(mut rng: impl RngCore) -> Self {
        let mut bytes = FieldBytes::default();

        loop {
            rng.fill_bytes(&mut bytes);
            if let Some(fe) = Self::from_bytes(&bytes).into() {
                return fe;
            }
        }
    }

    #[must_use]
    fn square(&self) -> Self {
        self.square()
    }

    #[must_use]
    fn double(&self) -> Self {
        self.double()
    }

    fn invert(&self) -> CtOption<Self> {
        self.invert()
    }

    fn sqrt(&self) -> CtOption<Self> {
        self.sqrt()
    }

    fn sqrt_ratio(num: &Self, div: &Self) -> (Choice, Self) {
        ff::helpers::sqrt_ratio_generic(num, div)
    }
}

impl PrimeField for FieldElement {
    type Repr = FieldBytes;

    const MODULUS: &'static str =
        "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f";
    const NUM_BITS: u32 = 256;
    const CAPACITY: u32 = 255;
    const TWO_INV: Self = Self(FieldElementImpl::from_bytes_unchecked(&[
        0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0xff,
        0xfe, 0x18,
    ]));
    const MULTIPLICATIVE_GENERATOR: Self = Self::from_u64(3);
    const S: u32 = 1;
    const ROOT_OF_UNITY: Self = Self(FieldElementImpl::from_bytes_unchecked(&[
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff,
        0xfc, 0x2e,
    ]));
    const ROOT_OF_UNITY_INV: Self = Self(FieldElementImpl::from_bytes_unchecked(&[
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff,
        0xfc, 0x2e,
    ]));
    const DELTA: Self = Self::from_u64(9);

    fn from_repr(repr: Self::Repr) -> CtOption<Self> {
        Self::from_bytes(&repr)
    }

    fn to_repr(&self) -> Self::Repr {
        self.to_bytes()
    }

    fn is_odd(&self) -> Choice {
        self.is_odd()
    }
}

impl ConditionallySelectable for FieldElement {
    #[inline(always)]
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        Self(FieldElementImpl::conditional_select(&(a.0), &(b.0), choice))
    }
}

impl ConstantTimeEq for FieldElement {
    fn ct_eq(&self, other: &Self) -> Choice {
        self.0.ct_eq(&(other.0))
    }
}

impl Default for FieldElement {
    fn default() -> Self {
        Self::ZERO
    }
}

impl DefaultIsZeroes for FieldElement {}

impl Eq for FieldElement {}

impl From<u64> for FieldElement {
    fn from(k: u64) -> Self {
        Self(FieldElementImpl::from_u64(k))
    }
}

impl PartialEq for FieldElement {
    fn eq(&self, other: &Self) -> bool {
        self.0.ct_eq(&(other.0)).into()
    }
}

impl Add<FieldElement> for FieldElement {
    type Output = FieldElement;

    fn add(self, other: FieldElement) -> FieldElement {
        FieldElement(self.0.add(&(other.0)))
    }
}

impl Add<&FieldElement> for FieldElement {
    type Output = FieldElement;

    fn add(self, other: &FieldElement) -> FieldElement {
        FieldElement(self.0.add(&(other.0)))
    }
}

impl Add<&FieldElement> for &FieldElement {
    type Output = FieldElement;

    fn add(self, other: &FieldElement) -> FieldElement {
        FieldElement(self.0.add(&(other.0)))
    }
}

impl AddAssign<FieldElement> for FieldElement {
    fn add_assign(&mut self, other: FieldElement) {
        *self = *self + &other;
    }
}

impl AddAssign<&FieldElement> for FieldElement {
    fn add_assign(&mut self, other: &FieldElement) {
        *self = *self + other;
    }
}

impl Sub<FieldElement> for FieldElement {
    type Output = FieldElement;

    fn sub(self, other: FieldElement) -> FieldElement {
        self + -other
    }
}

impl Sub<&FieldElement> for FieldElement {
    type Output = FieldElement;

    fn sub(self, other: &FieldElement) -> FieldElement {
        self + -other
    }
}

impl SubAssign<FieldElement> for FieldElement {
    fn sub_assign(&mut self, other: FieldElement) {
        *self = *self + -other;
    }
}

impl SubAssign<&FieldElement> for FieldElement {
    fn sub_assign(&mut self, other: &FieldElement) {
        *self = *self + -other;
    }
}

impl Mul<FieldElement> for FieldElement {
    type Output = FieldElement;

    fn mul(self, other: FieldElement) -> FieldElement {
        FieldElement(self.0.mul(&(other.0)))
    }
}

impl Mul<&FieldElement> for FieldElement {
    type Output = FieldElement;

    #[inline(always)]
    fn mul(self, other: &FieldElement) -> FieldElement {
        FieldElement(self.0.mul(&(other.0)))
    }
}

impl Mul<&FieldElement> for &FieldElement {
    type Output = FieldElement;

    fn mul(self, other: &FieldElement) -> FieldElement {
        FieldElement(self.0.mul(&(other.0)))
    }
}

impl MulAssign<FieldElement> for FieldElement {
    fn mul_assign(&mut self, rhs: FieldElement) {
        *self = *self * &rhs;
    }
}

impl MulAssign<&FieldElement> for FieldElement {
    fn mul_assign(&mut self, rhs: &FieldElement) {
        *self = *self * rhs;
    }
}

impl Neg for FieldElement {
    type Output = FieldElement;

    fn neg(self) -> FieldElement {
        self.negate(1)
    }
}

impl Neg for &FieldElement {
    type Output = FieldElement;

    fn neg(self) -> FieldElement {
        self.negate(1)
    }
}

impl Sum for FieldElement {
    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
        iter.reduce(core::ops::Add::add).unwrap_or(Self::ZERO)
    }
}

impl<'a> Sum<&'a FieldElement> for FieldElement {
    #[inline]
    fn sum<I: Iterator<Item = &'a FieldElement>>(iter: I) -> Self {
        iter.copied().sum()
    }
}

impl Product for FieldElement {
    fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
        iter.reduce(core::ops::Mul::mul).unwrap_or(Self::ONE)
    }
}

impl<'a> Product<&'a FieldElement> for FieldElement {
    fn product<I: Iterator<Item = &'a FieldElement>>(iter: I) -> Self {
        iter.copied().product()
    }
}

#[cfg(test)]
mod tests {
    use elliptic_curve::ff::{Field, PrimeField};
    use elliptic_curve::ops::BatchInvert;
    use num_bigint::{BigUint, ToBigUint};
    use proptest::prelude::*;
    use rand_core::OsRng;

    use super::FieldElement;
    use crate::{
        arithmetic::dev::{biguint_to_bytes, bytes_to_biguint},
        test_vectors::field::DBL_TEST_VECTORS,
        FieldBytes,
    };

    #[cfg(feature = "alloc")]
    use alloc::vec::Vec;

    impl From<&BigUint> for FieldElement {
        fn from(x: &BigUint) -> Self {
            let bytes = biguint_to_bytes(x);
            Self::from_bytes(&bytes.into()).unwrap()
        }
    }

    impl ToBigUint for FieldElement {
        fn to_biguint(&self) -> Option<BigUint> {
            Some(bytes_to_biguint(self.to_bytes().as_ref()))
        }
    }

    /// t = (modulus - 1) >> S
    const T: [u64; 4] = [
        0xffffffff7ffffe17,
        0xffffffffffffffff,
        0xffffffffffffffff,
        0x7fffffffffffffff,
    ];

    #[test]
    fn two_inv_constant() {
        assert_eq!(
            (FieldElement::from(2u64) * FieldElement::TWO_INV).normalize(),
            FieldElement::ONE
        );
    }

    #[test]
    fn root_of_unity_constant() {
        // ROOT_OF_UNITY^{2^s} mod m == 1
        assert_eq!(
            FieldElement::ROOT_OF_UNITY
                .pow_vartime(&[1u64 << FieldElement::S, 0, 0, 0])
                .normalize(),
            FieldElement::ONE
        );

        // MULTIPLICATIVE_GENERATOR^{t} mod m == ROOT_OF_UNITY
        assert_eq!(
            FieldElement::MULTIPLICATIVE_GENERATOR
                .pow_vartime(&T)
                .normalize(),
            FieldElement::ROOT_OF_UNITY
        )
    }

    #[test]
    fn root_of_unity_inv_constant() {
        assert_eq!(
            (FieldElement::ROOT_OF_UNITY * FieldElement::ROOT_OF_UNITY_INV).normalize(),
            FieldElement::ONE
        );
    }

    #[test]
    fn delta_constant() {
        // DELTA^{t} mod m == 1
        assert_eq!(
            FieldElement::DELTA.pow_vartime(&T).normalize(),
            FieldElement::ONE
        );
    }

    #[test]
    fn zero_is_additive_identity() {
        let zero = FieldElement::ZERO;
        let one = FieldElement::ONE;
        assert_eq!((zero + &zero).normalize(), zero);
        assert_eq!((one + &zero).normalize(), one);
    }

    #[test]
    fn one_is_multiplicative_identity() {
        let one = FieldElement::ONE;
        assert_eq!((one * &one).normalize(), one);
    }

    #[test]
    fn from_bytes() {
        assert_eq!(
            FieldElement::from_bytes(&FieldBytes::default()).unwrap(),
            FieldElement::ZERO
        );
        assert_eq!(
            FieldElement::from_bytes(
                &[
                    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                    0, 0, 0, 0, 0, 1
                ]
                .into()
            )
            .unwrap(),
            FieldElement::ONE
        );
        assert!(bool::from(
            FieldElement::from_bytes(&[0xff; 32].into()).is_none()
        ));
    }

    #[test]
    fn to_bytes() {
        assert_eq!(FieldElement::ZERO.to_bytes(), [0; 32].into());
        assert_eq!(
            FieldElement::ONE.to_bytes(),
            [
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 1
            ]
            .into()
        );
    }

    #[test]
    fn repeated_add() {
        let mut r = FieldElement::ONE;
        for i in 0..DBL_TEST_VECTORS.len() {
            assert_eq!(r.to_bytes(), DBL_TEST_VECTORS[i].into());
            r = (r + &r).normalize();
        }
    }

    #[test]
    fn repeated_double() {
        let mut r = FieldElement::ONE;
        for i in 0..DBL_TEST_VECTORS.len() {
            assert_eq!(r.to_bytes(), DBL_TEST_VECTORS[i].into());
            r = r.double().normalize();
        }
    }

    #[test]
    fn repeated_mul() {
        let mut r = FieldElement::ONE;
        let two = r + &r;
        for i in 0..DBL_TEST_VECTORS.len() {
            assert_eq!(r.normalize().to_bytes(), DBL_TEST_VECTORS[i].into());
            r = r * &two;
        }
    }

    #[test]
    fn negation() {
        let two = FieldElement::ONE.double();
        let neg_two = two.negate(2);
        assert_eq!((two + &neg_two).normalize(), FieldElement::ZERO);
        assert_eq!(neg_two.negate(3).normalize(), two.normalize());
    }

    #[test]
    fn invert() {
        assert!(bool::from(FieldElement::ZERO.invert().is_none()));

        let one = FieldElement::ONE;
        assert_eq!(one.invert().unwrap().normalize(), one);

        let two = one + &one;
        let inv_two = two.invert().unwrap();
        assert_eq!((two * &inv_two).normalize(), one);
    }

    #[test]
    fn batch_invert_array() {
        let k: FieldElement = FieldElement::random(&mut OsRng);
        let l: FieldElement = FieldElement::random(&mut OsRng);

        let expected = [k.invert().unwrap(), l.invert().unwrap()];
        assert_eq!(
            <FieldElement as BatchInvert<_>>::batch_invert(&[k, l]).unwrap(),
            expected
        );
    }

    #[test]
    #[cfg(feature = "alloc")]
    fn batch_invert() {
        let k: FieldElement = FieldElement::random(&mut OsRng);
        let l: FieldElement = FieldElement::random(&mut OsRng);

        let expected = vec![k.invert().unwrap(), l.invert().unwrap()];
        let field_elements = vec![k, l];
        let res: Vec<_> =
            <FieldElement as BatchInvert<_>>::batch_invert(field_elements.as_slice()).unwrap();
        assert_eq!(res, expected);
    }

    #[test]
    fn sqrt() {
        let one = FieldElement::ONE;
        let two = one + &one;
        let four = two.square();
        assert_eq!(four.sqrt().unwrap().normalize(), two.normalize());
    }

    #[test]
    #[cfg_attr(
        debug_assertions,
        should_panic(expected = "assertion failed: self.normalized")
    )]
    fn unnormalized_is_odd() {
        // This is a regression test for https://github.com/RustCrypto/elliptic-curves/issues/529
        // where `is_odd()` in debug mode force-normalized its argument
        // instead of checking that it is already normalized.
        // As a result, in release (where normalization didn't happen) `is_odd()`
        // could return an incorrect value.

        let x = FieldElement::from_bytes_unchecked(&[
            61, 128, 156, 189, 241, 12, 174, 4, 80, 52, 238, 78, 188, 251, 9, 188, 95, 115, 38, 6,
            212, 168, 175, 174, 211, 232, 208, 14, 182, 45, 59, 122,
        ]);
        // Produces an unnormalized FieldElement with magnitude 1
        // (we cannot create one directly).
        let y = x.sqrt().unwrap();

        // This is fine.
        assert!(y.normalize().is_odd().unwrap_u8() == 0);

        // This panics since `y` is not normalized.
        let _result = y.is_odd();
    }

    prop_compose! {
        fn field_element()(bytes in any::<[u8; 32]>()) -> FieldElement {
            let mut res = bytes_to_biguint(&bytes);
            let m = FieldElement::modulus_as_biguint();
            // Modulus is 256 bit long, same as the maximum `res`,
            // so this is guaranteed to land us in the correct range.
            if res >= m {
                res -= m;
            }
            FieldElement::from(&res)
        }
    }

    proptest! {

        #[test]
        fn fuzzy_add(
            a in field_element(),
            b in field_element()
        ) {
            let a_bi = a.to_biguint().unwrap();
            let b_bi = b.to_biguint().unwrap();
            let res_bi = (&a_bi + &b_bi) % FieldElement::modulus_as_biguint();
            let res_ref = FieldElement::from(&res_bi);
            let res_test = (&a + &b).normalize();
            assert_eq!(res_test, res_ref);
        }

        #[test]
        fn fuzzy_mul(
            a in field_element(),
            b in field_element()
        ) {
            let a_bi = a.to_biguint().unwrap();
            let b_bi = b.to_biguint().unwrap();
            let res_bi = (&a_bi * &b_bi) % FieldElement::modulus_as_biguint();
            let res_ref = FieldElement::from(&res_bi);
            let res_test = (&a * &b).normalize();
            assert_eq!(res_test, res_ref);
        }

        #[test]
        fn fuzzy_square(
            a in field_element()
        ) {
            let a_bi = a.to_biguint().unwrap();
            let res_bi = (&a_bi * &a_bi) % FieldElement::modulus_as_biguint();
            let res_ref = FieldElement::from(&res_bi);
            let res_test = a.square().normalize();
            assert_eq!(res_test, res_ref);
        }

        #[test]
        fn fuzzy_negate(
            a in field_element()
        ) {
            let m = FieldElement::modulus_as_biguint();
            let a_bi = a.to_biguint().unwrap();
            let res_bi = (&m - &a_bi) % &m;
            let res_ref = FieldElement::from(&res_bi);
            let res_test = a.negate(1).normalize();
            assert_eq!(res_test, res_ref);
        }

        #[test]
        fn fuzzy_sqrt(
            a in field_element()
        ) {
            let m = FieldElement::modulus_as_biguint();
            let a_bi = a.to_biguint().unwrap();
            let sqr_bi = (&a_bi * &a_bi) % &m;
            let sqr = FieldElement::from(&sqr_bi);

            let res_ref1 = a;
            let possible_sqrt = (&m - &a_bi) % &m;
            let res_ref2 = FieldElement::from(&possible_sqrt);
            let res_test = sqr.sqrt().unwrap().normalize();
            // FIXME: is there a rule which square root is returned?
            assert!(res_test == res_ref1 || res_test == res_ref2);
        }

        #[test]
        fn fuzzy_invert(
            a in field_element()
        ) {
            let a = if bool::from(a.is_zero()) { FieldElement::ONE } else { a };
            let a_bi = a.to_biguint().unwrap();
            let inv = a.invert().unwrap().normalize();
            let inv_bi = inv.to_biguint().unwrap();
            let m = FieldElement::modulus_as_biguint();
            assert_eq!((&inv_bi * &a_bi) % &m, 1.to_biguint().unwrap());
        }
    }
}