tokio/process/
mod.rs

1//! An implementation of asynchronous process management for Tokio.
2//!
3//! This module provides a [`Command`] struct that imitates the interface of the
4//! [`std::process::Command`] type in the standard library, but provides asynchronous versions of
5//! functions that create processes. These functions (`spawn`, `status`, `output` and their
6//! variants) return "future aware" types that interoperate with Tokio. The asynchronous process
7//! support is provided through signal handling on Unix and system APIs on Windows.
8//!
9//! [`std::process::Command`]: std::process::Command
10//!
11//! # Examples
12//!
13//! Here's an example program which will spawn `echo hello world` and then wait
14//! for it complete.
15//!
16//! ```no_run
17//! use tokio::process::Command;
18//!
19//! #[tokio::main]
20//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
21//!     // The usage is similar as with the standard library's `Command` type
22//!     let mut child = Command::new("echo")
23//!         .arg("hello")
24//!         .arg("world")
25//!         .spawn()
26//!         .expect("failed to spawn");
27//!
28//!     // Await until the command completes
29//!     let status = child.wait().await?;
30//!     println!("the command exited with: {}", status);
31//!     Ok(())
32//! }
33//! ```
34//!
35//! Next, let's take a look at an example where we not only spawn `echo hello
36//! world` but we also capture its output.
37//!
38//! ```no_run
39//! use tokio::process::Command;
40//!
41//! #[tokio::main]
42//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
43//!     // Like above, but use `output` which returns a future instead of
44//!     // immediately returning the `Child`.
45//!     let output = Command::new("echo").arg("hello").arg("world")
46//!                         .output();
47//!
48//!     let output = output.await?;
49//!
50//!     assert!(output.status.success());
51//!     assert_eq!(output.stdout, b"hello world\n");
52//!     Ok(())
53//! }
54//! ```
55//!
56//! We can also read input line by line.
57//!
58//! ```no_run
59//! use tokio::io::{BufReader, AsyncBufReadExt};
60//! use tokio::process::Command;
61//!
62//! use std::process::Stdio;
63//!
64//! #[tokio::main]
65//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
66//!     let mut cmd = Command::new("cat");
67//!
68//!     // Specify that we want the command's standard output piped back to us.
69//!     // By default, standard input/output/error will be inherited from the
70//!     // current process (for example, this means that standard input will
71//!     // come from the keyboard and standard output/error will go directly to
72//!     // the terminal if this process is invoked from the command line).
73//!     cmd.stdout(Stdio::piped());
74//!
75//!     let mut child = cmd.spawn()
76//!         .expect("failed to spawn command");
77//!
78//!     let stdout = child.stdout.take()
79//!         .expect("child did not have a handle to stdout");
80//!
81//!     let mut reader = BufReader::new(stdout).lines();
82//!
83//!     // Ensure the child process is spawned in the runtime so it can
84//!     // make progress on its own while we await for any output.
85//!     tokio::spawn(async move {
86//!         let status = child.wait().await
87//!             .expect("child process encountered an error");
88//!
89//!         println!("child status was: {}", status);
90//!     });
91//!
92//!     while let Some(line) = reader.next_line().await? {
93//!         println!("Line: {}", line);
94//!     }
95//!
96//!     Ok(())
97//! }
98//! ```
99//!
100//! Here is another example using `sort` writing into the child process
101//! standard input, capturing the output of the sorted text.
102//!
103//! ```no_run
104//! use tokio::io::AsyncWriteExt;
105//! use tokio::process::Command;
106//!
107//! use std::process::Stdio;
108//!
109//! #[tokio::main]
110//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
111//!     let mut cmd = Command::new("sort");
112//!
113//!     // Specifying that we want pipe both the output and the input.
114//!     // Similarly to capturing the output, by configuring the pipe
115//!     // to stdin it can now be used as an asynchronous writer.
116//!     cmd.stdout(Stdio::piped());
117//!     cmd.stdin(Stdio::piped());
118//!
119//!     let mut child = cmd.spawn().expect("failed to spawn command");
120//!
121//!     // These are the animals we want to sort
122//!     let animals: &[&str] = &["dog", "bird", "frog", "cat", "fish"];
123//!
124//!     let mut stdin = child
125//!         .stdin
126//!         .take()
127//!         .expect("child did not have a handle to stdin");
128//!
129//!     // Write our animals to the child process
130//!     // Note that the behavior of `sort` is to buffer _all input_ before writing any output.
131//!     // In the general sense, it is recommended to write to the child in a separate task as
132//!     // awaiting its exit (or output) to avoid deadlocks (for example, the child tries to write
133//!     // some output but gets stuck waiting on the parent to read from it, meanwhile the parent
134//!     // is stuck waiting to write its input completely before reading the output).
135//!     stdin
136//!         .write(animals.join("\n").as_bytes())
137//!         .await
138//!         .expect("could not write to stdin");
139//!
140//!     // We drop the handle here which signals EOF to the child process.
141//!     // This tells the child process that it there is no more data on the pipe.
142//!     drop(stdin);
143//!
144//!     let op = child.wait_with_output().await?;
145//!
146//!     // Results should come back in sorted order
147//!     assert_eq!(op.stdout, "bird\ncat\ndog\nfish\nfrog\n".as_bytes());
148//!
149//!     Ok(())
150//! }
151//! ```
152//!
153//! With some coordination, we can also pipe the output of one command into
154//! another.
155//!
156//! ```no_run
157//! use tokio::join;
158//! use tokio::process::Command;
159//! use std::process::Stdio;
160//!
161//! #[tokio::main]
162//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
163//!     let mut echo = Command::new("echo")
164//!         .arg("hello world!")
165//!         .stdout(Stdio::piped())
166//!         .spawn()
167//!         .expect("failed to spawn echo");
168//!
169//!     let tr_stdin: Stdio = echo
170//!         .stdout
171//!         .take()
172//!         .unwrap()
173//!         .try_into()
174//!         .expect("failed to convert to Stdio");
175//!
176//!     let tr = Command::new("tr")
177//!         .arg("a-z")
178//!         .arg("A-Z")
179//!         .stdin(tr_stdin)
180//!         .stdout(Stdio::piped())
181//!         .spawn()
182//!         .expect("failed to spawn tr");
183//!
184//!     let (echo_result, tr_output) = join!(echo.wait(), tr.wait_with_output());
185//!
186//!     assert!(echo_result.unwrap().success());
187//!
188//!     let tr_output = tr_output.expect("failed to await tr");
189//!     assert!(tr_output.status.success());
190//!
191//!     assert_eq!(tr_output.stdout, b"HELLO WORLD!\n");
192//!
193//!     Ok(())
194//! }
195//! ```
196//!
197//! # Caveats
198//!
199//! ## Dropping/Cancellation
200//!
201//! Similar to the behavior to the standard library, and unlike the futures
202//! paradigm of dropping-implies-cancellation, a spawned process will, by
203//! default, continue to execute even after the `Child` handle has been dropped.
204//!
205//! The [`Command::kill_on_drop`] method can be used to modify this behavior
206//! and kill the child process if the `Child` wrapper is dropped before it
207//! has exited.
208//!
209//! ## Unix Processes
210//!
211//! On Unix platforms processes must be "reaped" by their parent process after
212//! they have exited in order to release all OS resources. A child process which
213//! has exited, but has not yet been reaped by its parent is considered a "zombie"
214//! process. Such processes continue to count against limits imposed by the system,
215//! and having too many zombie processes present can prevent additional processes
216//! from being spawned.
217//!
218//! The tokio runtime will, on a best-effort basis, attempt to reap and clean up
219//! any process which it has spawned. No additional guarantees are made with regard to
220//! how quickly or how often this procedure will take place.
221//!
222//! It is recommended to avoid dropping a [`Child`] process handle before it has been
223//! fully `await`ed if stricter cleanup guarantees are required.
224//!
225//! [`Command`]: crate::process::Command
226//! [`Command::kill_on_drop`]: crate::process::Command::kill_on_drop
227//! [`Child`]: crate::process::Child
228
229#[path = "unix/mod.rs"]
230#[cfg(unix)]
231mod imp;
232
233#[cfg(unix)]
234pub(crate) mod unix {
235    pub(crate) use super::imp::*;
236}
237
238#[path = "windows.rs"]
239#[cfg(windows)]
240mod imp;
241
242mod kill;
243
244use crate::io::{AsyncRead, AsyncWrite, ReadBuf};
245use crate::process::kill::Kill;
246
247use std::ffi::OsStr;
248use std::future::Future;
249use std::io;
250use std::path::Path;
251use std::pin::Pin;
252use std::process::{Command as StdCommand, ExitStatus, Output, Stdio};
253use std::task::{ready, Context, Poll};
254
255#[cfg(unix)]
256use std::os::unix::process::CommandExt;
257#[cfg(windows)]
258use std::os::windows::process::CommandExt;
259
260cfg_windows! {
261    use crate::os::windows::io::{AsRawHandle, RawHandle};
262}
263
264/// This structure mimics the API of [`std::process::Command`] found in the standard library, but
265/// replaces functions that create a process with an asynchronous variant. The main provided
266/// asynchronous functions are [spawn](Command::spawn), [status](Command::status), and
267/// [output](Command::output).
268///
269/// `Command` uses asynchronous versions of some `std` types (for example [`Child`]).
270///
271/// [`std::process::Command`]: std::process::Command
272/// [`Child`]: struct@Child
273#[derive(Debug)]
274pub struct Command {
275    std: StdCommand,
276    kill_on_drop: bool,
277}
278
279pub(crate) struct SpawnedChild {
280    child: imp::Child,
281    stdin: Option<imp::ChildStdio>,
282    stdout: Option<imp::ChildStdio>,
283    stderr: Option<imp::ChildStdio>,
284}
285
286impl Command {
287    /// Constructs a new `Command` for launching the program at
288    /// path `program`, with the following default configuration:
289    ///
290    /// * No arguments to the program
291    /// * Inherit the current process's environment
292    /// * Inherit the current process's working directory
293    /// * Inherit stdin/stdout/stderr for `spawn` or `status`, but create pipes for `output`
294    ///
295    /// Builder methods are provided to change these defaults and
296    /// otherwise configure the process.
297    ///
298    /// If `program` is not an absolute path, the `PATH` will be searched in
299    /// an OS-defined way.
300    ///
301    /// The search path to be used may be controlled by setting the
302    /// `PATH` environment variable on the Command,
303    /// but this has some implementation limitations on Windows
304    /// (see issue [rust-lang/rust#37519]).
305    ///
306    /// # Examples
307    ///
308    /// Basic usage:
309    ///
310    /// ```no_run
311    /// use tokio::process::Command;
312    /// let mut command = Command::new("sh");
313    /// # let _ = command.output(); // assert borrow checker
314    /// ```
315    ///
316    /// [rust-lang/rust#37519]: https://github.com/rust-lang/rust/issues/37519
317    pub fn new<S: AsRef<OsStr>>(program: S) -> Command {
318        Self::from(StdCommand::new(program))
319    }
320
321    /// Cheaply convert to a `&std::process::Command` for places where the type from the standard
322    /// library is expected.
323    pub fn as_std(&self) -> &StdCommand {
324        &self.std
325    }
326
327    /// Cheaply convert to a `&mut std::process::Command` for places where the type from the
328    /// standard library is expected.
329    pub fn as_std_mut(&mut self) -> &mut StdCommand {
330        &mut self.std
331    }
332
333    /// Cheaply convert into a `std::process::Command`.
334    ///
335    /// Note that Tokio specific options will be lost. Currently, this only applies to [`kill_on_drop`].
336    ///
337    /// [`kill_on_drop`]: Command::kill_on_drop
338    pub fn into_std(self) -> StdCommand {
339        self.std
340    }
341
342    /// Adds an argument to pass to the program.
343    ///
344    /// Only one argument can be passed per use. So instead of:
345    ///
346    /// ```no_run
347    /// let mut command = tokio::process::Command::new("sh");
348    /// command.arg("-C /path/to/repo");
349    ///
350    /// # let _ = command.output(); // assert borrow checker
351    /// ```
352    ///
353    /// usage would be:
354    ///
355    /// ```no_run
356    /// let mut command = tokio::process::Command::new("sh");
357    /// command.arg("-C");
358    /// command.arg("/path/to/repo");
359    ///
360    /// # let _ = command.output(); // assert borrow checker
361    /// ```
362    ///
363    /// To pass multiple arguments see [`args`].
364    ///
365    /// [`args`]: method@Self::args
366    ///
367    /// # Examples
368    ///
369    /// Basic usage:
370    ///
371    /// ```no_run
372    /// # async fn test() { // allow using await
373    /// use tokio::process::Command;
374    ///
375    /// let output = Command::new("ls")
376    ///         .arg("-l")
377    ///         .arg("-a")
378    ///         .output().await.unwrap();
379    /// # }
380    ///
381    /// ```
382    pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command {
383        self.std.arg(arg);
384        self
385    }
386
387    /// Adds multiple arguments to pass to the program.
388    ///
389    /// To pass a single argument see [`arg`].
390    ///
391    /// [`arg`]: method@Self::arg
392    ///
393    /// # Examples
394    ///
395    /// Basic usage:
396    ///
397    /// ```no_run
398    /// # async fn test() { // allow using await
399    /// use tokio::process::Command;
400    ///
401    /// let output = Command::new("ls")
402    ///         .args(&["-l", "-a"])
403    ///         .output().await.unwrap();
404    /// # }
405    /// ```
406    pub fn args<I, S>(&mut self, args: I) -> &mut Command
407    where
408        I: IntoIterator<Item = S>,
409        S: AsRef<OsStr>,
410    {
411        self.std.args(args);
412        self
413    }
414
415    cfg_windows! {
416        /// Append literal text to the command line without any quoting or escaping.
417        ///
418        /// This is useful for passing arguments to `cmd.exe /c`, which doesn't follow
419        /// `CommandLineToArgvW` escaping rules.
420        pub fn raw_arg<S: AsRef<OsStr>>(&mut self, text_to_append_as_is: S) -> &mut Command {
421            self.std.raw_arg(text_to_append_as_is);
422            self
423        }
424    }
425
426    /// Inserts or updates an environment variable mapping.
427    ///
428    /// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
429    /// and case-sensitive on all other platforms.
430    ///
431    /// # Examples
432    ///
433    /// Basic usage:
434    ///
435    /// ```no_run
436    /// # async fn test() { // allow using await
437    /// use tokio::process::Command;
438    ///
439    /// let output = Command::new("ls")
440    ///         .env("PATH", "/bin")
441    ///         .output().await.unwrap();
442    /// # }
443    /// ```
444    pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command
445    where
446        K: AsRef<OsStr>,
447        V: AsRef<OsStr>,
448    {
449        self.std.env(key, val);
450        self
451    }
452
453    /// Adds or updates multiple environment variable mappings.
454    ///
455    /// # Examples
456    ///
457    /// Basic usage:
458    ///
459    /// ```no_run
460    /// # async fn test() { // allow using await
461    /// use tokio::process::Command;
462    /// use std::process::{Stdio};
463    /// use std::env;
464    /// use std::collections::HashMap;
465    ///
466    /// let filtered_env : HashMap<String, String> =
467    ///     env::vars().filter(|&(ref k, _)|
468    ///         k == "TERM" || k == "TZ" || k == "LANG" || k == "PATH"
469    ///     ).collect();
470    ///
471    /// let output = Command::new("printenv")
472    ///         .stdin(Stdio::null())
473    ///         .stdout(Stdio::inherit())
474    ///         .env_clear()
475    ///         .envs(&filtered_env)
476    ///         .output().await.unwrap();
477    /// # }
478    /// ```
479    pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Command
480    where
481        I: IntoIterator<Item = (K, V)>,
482        K: AsRef<OsStr>,
483        V: AsRef<OsStr>,
484    {
485        self.std.envs(vars);
486        self
487    }
488
489    /// Removes an environment variable mapping.
490    ///
491    /// # Examples
492    ///
493    /// Basic usage:
494    ///
495    /// ```no_run
496    /// # async fn test() { // allow using await
497    /// use tokio::process::Command;
498    ///
499    /// let output = Command::new("ls")
500    ///         .env_remove("PATH")
501    ///         .output().await.unwrap();
502    /// # }
503    /// ```
504    pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command {
505        self.std.env_remove(key);
506        self
507    }
508
509    /// Clears the entire environment map for the child process.
510    ///
511    /// # Examples
512    ///
513    /// Basic usage:
514    ///
515    /// ```no_run
516    /// # async fn test() { // allow using await
517    /// use tokio::process::Command;
518    ///
519    /// let output = Command::new("ls")
520    ///         .env_clear()
521    ///         .output().await.unwrap();
522    /// # }
523    /// ```
524    pub fn env_clear(&mut self) -> &mut Command {
525        self.std.env_clear();
526        self
527    }
528
529    /// Sets the working directory for the child process.
530    ///
531    /// # Platform-specific behavior
532    ///
533    /// If the program path is relative (e.g., `"./script.sh"`), it's ambiguous
534    /// whether it should be interpreted relative to the parent's working
535    /// directory or relative to `current_dir`. The behavior in this case is
536    /// platform specific and unstable, and it's recommended to use
537    /// [`canonicalize`] to get an absolute program path instead.
538    ///
539    /// [`canonicalize`]: crate::fs::canonicalize()
540    ///
541    /// # Examples
542    ///
543    /// Basic usage:
544    ///
545    /// ```no_run
546    /// # async fn test() { // allow using await
547    /// use tokio::process::Command;
548    ///
549    /// let output = Command::new("ls")
550    ///         .current_dir("/bin")
551    ///         .output().await.unwrap();
552    /// # }
553    /// ```
554    pub fn current_dir<P: AsRef<Path>>(&mut self, dir: P) -> &mut Command {
555        self.std.current_dir(dir);
556        self
557    }
558
559    /// Sets configuration for the child process's standard input (stdin) handle.
560    ///
561    /// Defaults to [`inherit`].
562    ///
563    /// [`inherit`]: std::process::Stdio::inherit
564    ///
565    /// # Examples
566    ///
567    /// Basic usage:
568    ///
569    /// ```no_run
570    /// # async fn test() { // allow using await
571    /// use std::process::{Stdio};
572    /// use tokio::process::Command;
573    ///
574    /// let output = Command::new("ls")
575    ///         .stdin(Stdio::null())
576    ///         .output().await.unwrap();
577    /// # }
578    /// ```
579    pub fn stdin<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
580        self.std.stdin(cfg);
581        self
582    }
583
584    /// Sets configuration for the child process's standard output (stdout) handle.
585    ///
586    /// Defaults to [`inherit`] when used with `spawn` or `status`, and
587    /// defaults to [`piped`] when used with `output`.
588    ///
589    /// [`inherit`]: std::process::Stdio::inherit
590    /// [`piped`]: std::process::Stdio::piped
591    ///
592    /// # Examples
593    ///
594    /// Basic usage:
595    ///
596    /// ```no_run
597    /// # async fn test() { // allow using await
598    /// use tokio::process::Command;
599    /// use std::process::Stdio;
600    ///
601    /// let output = Command::new("ls")
602    ///         .stdout(Stdio::null())
603    ///         .output().await.unwrap();
604    /// # }
605    /// ```
606    pub fn stdout<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
607        self.std.stdout(cfg);
608        self
609    }
610
611    /// Sets configuration for the child process's standard error (stderr) handle.
612    ///
613    /// Defaults to [`inherit`] when used with `spawn` or `status`, and
614    /// defaults to [`piped`] when used with `output`.
615    ///
616    /// [`inherit`]: std::process::Stdio::inherit
617    /// [`piped`]: std::process::Stdio::piped
618    ///
619    /// # Examples
620    ///
621    /// Basic usage:
622    ///
623    /// ```no_run
624    /// # async fn test() { // allow using await
625    /// use tokio::process::Command;
626    /// use std::process::{Stdio};
627    ///
628    /// let output = Command::new("ls")
629    ///         .stderr(Stdio::null())
630    ///         .output().await.unwrap();
631    /// # }
632    /// ```
633    pub fn stderr<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
634        self.std.stderr(cfg);
635        self
636    }
637
638    /// Controls whether a `kill` operation should be invoked on a spawned child
639    /// process when its corresponding `Child` handle is dropped.
640    ///
641    /// By default, this value is assumed to be `false`, meaning the next spawned
642    /// process will not be killed on drop, similar to the behavior of the standard
643    /// library.
644    ///
645    /// # Caveats
646    ///
647    /// On Unix platforms processes must be "reaped" by their parent process after
648    /// they have exited in order to release all OS resources. A child process which
649    /// has exited, but has not yet been reaped by its parent is considered a "zombie"
650    /// process. Such processes continue to count against limits imposed by the system,
651    /// and having too many zombie processes present can prevent additional processes
652    /// from being spawned.
653    ///
654    /// Although issuing a `kill` signal to the child process is a synchronous
655    /// operation, the resulting zombie process cannot be `.await`ed inside of the
656    /// destructor to avoid blocking other tasks. The tokio runtime will, on a
657    /// best-effort basis, attempt to reap and clean up such processes in the
658    /// background, but no additional guarantees are made with regard to
659    /// how quickly or how often this procedure will take place.
660    ///
661    /// If stronger guarantees are required, it is recommended to avoid dropping
662    /// a [`Child`] handle where possible, and instead utilize `child.wait().await`
663    /// or `child.kill().await` where possible.
664    pub fn kill_on_drop(&mut self, kill_on_drop: bool) -> &mut Command {
665        self.kill_on_drop = kill_on_drop;
666        self
667    }
668
669    cfg_windows! {
670        /// Sets the [process creation flags][1] to be passed to `CreateProcess`.
671        ///
672        /// These will always be ORed with `CREATE_UNICODE_ENVIRONMENT`.
673        ///
674        /// [1]: https://msdn.microsoft.com/en-us/library/windows/desktop/ms684863(v=vs.85).aspx
675        pub fn creation_flags(&mut self, flags: u32) -> &mut Command {
676            self.std.creation_flags(flags);
677            self
678        }
679    }
680
681    /// Sets the child process's user ID. This translates to a
682    /// `setuid` call in the child process. Failure in the `setuid`
683    /// call will cause the spawn to fail.
684    #[cfg(unix)]
685    #[cfg_attr(docsrs, doc(cfg(unix)))]
686    pub fn uid(&mut self, id: u32) -> &mut Command {
687        #[cfg(target_os = "nto")]
688        let id = id as i32;
689        self.std.uid(id);
690        self
691    }
692
693    /// Similar to `uid` but sets the group ID of the child process. This has
694    /// the same semantics as the `uid` field.
695    #[cfg(unix)]
696    #[cfg_attr(docsrs, doc(cfg(unix)))]
697    pub fn gid(&mut self, id: u32) -> &mut Command {
698        #[cfg(target_os = "nto")]
699        let id = id as i32;
700        self.std.gid(id);
701        self
702    }
703
704    /// Sets executable argument.
705    ///
706    /// Set the first process argument, `argv[0]`, to something other than the
707    /// default executable path.
708    #[cfg(unix)]
709    #[cfg_attr(docsrs, doc(cfg(unix)))]
710    pub fn arg0<S>(&mut self, arg: S) -> &mut Command
711    where
712        S: AsRef<OsStr>,
713    {
714        self.std.arg0(arg);
715        self
716    }
717
718    /// Schedules a closure to be run just before the `exec` function is
719    /// invoked.
720    ///
721    /// The closure is allowed to return an I/O error whose OS error code will
722    /// be communicated back to the parent and returned as an error from when
723    /// the spawn was requested.
724    ///
725    /// Multiple closures can be registered and they will be called in order of
726    /// their registration. If a closure returns `Err` then no further closures
727    /// will be called and the spawn operation will immediately return with a
728    /// failure.
729    ///
730    /// # Safety
731    ///
732    /// This closure will be run in the context of the child process after a
733    /// `fork`. This primarily means that any modifications made to memory on
734    /// behalf of this closure will **not** be visible to the parent process.
735    /// This is often a very constrained environment where normal operations
736    /// like `malloc` or acquiring a mutex are not guaranteed to work (due to
737    /// other threads perhaps still running when the `fork` was run).
738    ///
739    /// This also means that all resources such as file descriptors and
740    /// memory-mapped regions got duplicated. It is your responsibility to make
741    /// sure that the closure does not violate library invariants by making
742    /// invalid use of these duplicates.
743    ///
744    /// When this closure is run, aspects such as the stdio file descriptors and
745    /// working directory have successfully been changed, so output to these
746    /// locations may not appear where intended.
747    #[cfg(unix)]
748    #[cfg_attr(docsrs, doc(cfg(unix)))]
749    pub unsafe fn pre_exec<F>(&mut self, f: F) -> &mut Command
750    where
751        F: FnMut() -> io::Result<()> + Send + Sync + 'static,
752    {
753        self.std.pre_exec(f);
754        self
755    }
756
757    /// Sets the process group ID (PGID) of the child process. Equivalent to a
758    /// `setpgid` call in the child process, but may be more efficient.
759    ///
760    /// Process groups determine which processes receive signals.
761    ///
762    /// # Examples
763    ///
764    /// Pressing Ctrl-C in a terminal will send `SIGINT` to all processes
765    /// in the current foreground process group. By spawning the `sleep`
766    /// subprocess in a new process group, it will not receive `SIGINT`
767    /// from the terminal.
768    ///
769    /// The parent process could install a [signal handler] and manage the
770    /// process on its own terms.
771    ///
772    /// A process group ID of 0 will use the process ID as the PGID.
773    ///
774    /// ```no_run
775    /// # async fn test() { // allow using await
776    /// use tokio::process::Command;
777    ///
778    /// let output = Command::new("sleep")
779    ///     .arg("10")
780    ///     .process_group(0)
781    ///     .output()
782    ///     .await
783    ///     .unwrap();
784    /// # }
785    /// ```
786    ///
787    /// [signal handler]: crate::signal
788    #[cfg(unix)]
789    #[cfg_attr(docsrs, doc(cfg(unix)))]
790    pub fn process_group(&mut self, pgroup: i32) -> &mut Command {
791        self.std.process_group(pgroup);
792        self
793    }
794
795    /// Executes the command as a child process, returning a handle to it.
796    ///
797    /// By default, stdin, stdout and stderr are inherited from the parent.
798    ///
799    /// This method will spawn the child process synchronously and return a
800    /// handle to a future-aware child process. The `Child` returned implements
801    /// `Future` itself to acquire the `ExitStatus` of the child, and otherwise
802    /// the `Child` has methods to acquire handles to the stdin, stdout, and
803    /// stderr streams.
804    ///
805    /// All I/O this child does will be associated with the current default
806    /// event loop.
807    ///
808    /// # Examples
809    ///
810    /// Basic usage:
811    ///
812    /// ```no_run
813    /// # if cfg!(miri) { return } // No `pidfd_spawnp` in miri.
814    /// use tokio::process::Command;
815    ///
816    /// async fn run_ls() -> std::process::ExitStatus {
817    ///     Command::new("ls")
818    ///         .spawn()
819    ///         .expect("ls command failed to start")
820    ///         .wait()
821    ///         .await
822    ///         .expect("ls command failed to run")
823    /// }
824    /// ```
825    ///
826    /// # Caveats
827    ///
828    /// ## Dropping/Cancellation
829    ///
830    /// Similar to the behavior to the standard library, and unlike the futures
831    /// paradigm of dropping-implies-cancellation, a spawned process will, by
832    /// default, continue to execute even after the `Child` handle has been dropped.
833    ///
834    /// The [`Command::kill_on_drop`] method can be used to modify this behavior
835    /// and kill the child process if the `Child` wrapper is dropped before it
836    /// has exited.
837    ///
838    /// ## Unix Processes
839    ///
840    /// On Unix platforms processes must be "reaped" by their parent process after
841    /// they have exited in order to release all OS resources. A child process which
842    /// has exited, but has not yet been reaped by its parent is considered a "zombie"
843    /// process. Such processes continue to count against limits imposed by the system,
844    /// and having too many zombie processes present can prevent additional processes
845    /// from being spawned.
846    ///
847    /// The tokio runtime will, on a best-effort basis, attempt to reap and clean up
848    /// any process which it has spawned. No additional guarantees are made with regard to
849    /// how quickly or how often this procedure will take place.
850    ///
851    /// It is recommended to avoid dropping a [`Child`] process handle before it has been
852    /// fully `await`ed if stricter cleanup guarantees are required.
853    ///
854    /// [`Command`]: crate::process::Command
855    /// [`Command::kill_on_drop`]: crate::process::Command::kill_on_drop
856    /// [`Child`]: crate::process::Child
857    ///
858    /// # Errors
859    ///
860    /// On Unix platforms this method will fail with `std::io::ErrorKind::WouldBlock`
861    /// if the system process limit is reached (which includes other applications
862    /// running on the system).
863    pub fn spawn(&mut self) -> io::Result<Child> {
864        imp::spawn_child(&mut self.std).map(|spawned_child| Child {
865            child: FusedChild::Child(ChildDropGuard {
866                inner: spawned_child.child,
867                kill_on_drop: self.kill_on_drop,
868            }),
869            stdin: spawned_child.stdin.map(|inner| ChildStdin { inner }),
870            stdout: spawned_child.stdout.map(|inner| ChildStdout { inner }),
871            stderr: spawned_child.stderr.map(|inner| ChildStderr { inner }),
872        })
873    }
874
875    /// Executes the command as a child process, waiting for it to finish and
876    /// collecting its exit status.
877    ///
878    /// By default, stdin, stdout and stderr are inherited from the parent.
879    /// If any input/output handles are set to a pipe then they will be immediately
880    /// closed after the child is spawned.
881    ///
882    /// All I/O this child does will be associated with the current default
883    /// event loop.
884    ///
885    /// The destructor of the future returned by this function will kill
886    /// the child if [`kill_on_drop`] is set to true.
887    ///
888    /// [`kill_on_drop`]: fn@Self::kill_on_drop
889    ///
890    /// # Errors
891    ///
892    /// This future will return an error if the child process cannot be spawned
893    /// or if there is an error while awaiting its status.
894    ///
895    /// On Unix platforms this method will fail with `std::io::ErrorKind::WouldBlock`
896    /// if the system process limit is reached (which includes other applications
897    /// running on the system).
898    ///
899    /// # Examples
900    ///
901    /// Basic usage:
902    ///
903    /// ```no_run
904    /// use tokio::process::Command;
905    ///
906    /// async fn run_ls() -> std::process::ExitStatus {
907    ///     Command::new("ls")
908    ///         .status()
909    ///         .await
910    ///         .expect("ls command failed to run")
911    /// }
912    /// ```
913    pub fn status(&mut self) -> impl Future<Output = io::Result<ExitStatus>> {
914        let child = self.spawn();
915
916        async {
917            let mut child = child?;
918
919            // Ensure we close any stdio handles so we can't deadlock
920            // waiting on the child which may be waiting to read/write
921            // to a pipe we're holding.
922            child.stdin.take();
923            child.stdout.take();
924            child.stderr.take();
925
926            child.wait().await
927        }
928    }
929
930    /// Executes the command as a child process, waiting for it to finish and
931    /// collecting all of its output.
932    ///
933    /// > **Note**: this method, unlike the standard library, will
934    /// > unconditionally configure the stdout/stderr handles to be pipes, even
935    /// > if they have been previously configured. If this is not desired then
936    /// > the `spawn` method should be used in combination with the
937    /// > `wait_with_output` method on child.
938    ///
939    /// This method will return a future representing the collection of the
940    /// child process's stdout/stderr. It will resolve to
941    /// the `Output` type in the standard library, containing `stdout` and
942    /// `stderr` as `Vec<u8>` along with an `ExitStatus` representing how the
943    /// process exited.
944    ///
945    /// All I/O this child does will be associated with the current default
946    /// event loop.
947    ///
948    /// The destructor of the future returned by this function will kill
949    /// the child if [`kill_on_drop`] is set to true.
950    ///
951    /// [`kill_on_drop`]: fn@Self::kill_on_drop
952    ///
953    /// # Errors
954    ///
955    /// This future will return an error if the child process cannot be spawned
956    /// or if there is an error while awaiting its status.
957    ///
958    /// On Unix platforms this method will fail with `std::io::ErrorKind::WouldBlock`
959    /// if the system process limit is reached (which includes other applications
960    /// running on the system).
961    /// # Examples
962    ///
963    /// Basic usage:
964    ///
965    /// ```no_run
966    /// use tokio::process::Command;
967    ///
968    /// async fn run_ls() {
969    ///     let output: std::process::Output = Command::new("ls")
970    ///         .output()
971    ///         .await
972    ///         .expect("ls command failed to run");
973    ///     println!("stderr of ls: {:?}", output.stderr);
974    /// }
975    /// ```
976    pub fn output(&mut self) -> impl Future<Output = io::Result<Output>> {
977        self.std.stdout(Stdio::piped());
978        self.std.stderr(Stdio::piped());
979
980        let child = self.spawn();
981
982        async { child?.wait_with_output().await }
983    }
984}
985
986impl From<StdCommand> for Command {
987    fn from(std: StdCommand) -> Command {
988        Command {
989            std,
990            kill_on_drop: false,
991        }
992    }
993}
994
995/// A drop guard which can ensure the child process is killed on drop if specified.
996#[derive(Debug)]
997struct ChildDropGuard<T: Kill> {
998    inner: T,
999    kill_on_drop: bool,
1000}
1001
1002impl<T: Kill> Kill for ChildDropGuard<T> {
1003    fn kill(&mut self) -> io::Result<()> {
1004        let ret = self.inner.kill();
1005
1006        if ret.is_ok() {
1007            self.kill_on_drop = false;
1008        }
1009
1010        ret
1011    }
1012}
1013
1014impl<T: Kill> Drop for ChildDropGuard<T> {
1015    fn drop(&mut self) {
1016        if self.kill_on_drop {
1017            drop(self.kill());
1018        }
1019    }
1020}
1021
1022impl<T, E, F> Future for ChildDropGuard<F>
1023where
1024    F: Future<Output = Result<T, E>> + Kill + Unpin,
1025{
1026    type Output = Result<T, E>;
1027
1028    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
1029        ready!(crate::trace::trace_leaf(cx));
1030        // Keep track of task budget
1031        let coop = ready!(crate::runtime::coop::poll_proceed(cx));
1032
1033        let ret = Pin::new(&mut self.inner).poll(cx);
1034
1035        if let Poll::Ready(Ok(_)) = ret {
1036            // Avoid the overhead of trying to kill a reaped process
1037            self.kill_on_drop = false;
1038        }
1039
1040        if ret.is_ready() {
1041            coop.made_progress();
1042        }
1043
1044        ret
1045    }
1046}
1047
1048/// Keeps track of the exit status of a child process without worrying about
1049/// polling the underlying futures even after they have completed.
1050#[derive(Debug)]
1051enum FusedChild {
1052    Child(ChildDropGuard<imp::Child>),
1053    Done(ExitStatus),
1054}
1055
1056/// Representation of a child process spawned onto an event loop.
1057///
1058/// # Caveats
1059/// Similar to the behavior to the standard library, and unlike the futures
1060/// paradigm of dropping-implies-cancellation, a spawned process will, by
1061/// default, continue to execute even after the `Child` handle has been dropped.
1062///
1063/// The `Command::kill_on_drop` method can be used to modify this behavior
1064/// and kill the child process if the `Child` wrapper is dropped before it
1065/// has exited.
1066#[derive(Debug)]
1067pub struct Child {
1068    child: FusedChild,
1069
1070    /// The handle for writing to the child's standard input (stdin), if it has
1071    /// been captured. To avoid partially moving the `child` and thus blocking
1072    /// yourself from calling functions on `child` while using `stdin`, you might
1073    /// find it helpful to do:
1074    ///
1075    /// ```no_run
1076    /// # let mut child = tokio::process::Command::new("echo").spawn().unwrap();
1077    /// let stdin = child.stdin.take().unwrap();
1078    /// ```
1079    pub stdin: Option<ChildStdin>,
1080
1081    /// The handle for reading from the child's standard output (stdout), if it
1082    /// has been captured. You might find it helpful to do
1083    ///
1084    /// ```no_run
1085    /// # let mut child = tokio::process::Command::new("echo").spawn().unwrap();
1086    /// let stdout = child.stdout.take().unwrap();
1087    /// ```
1088    ///
1089    /// to avoid partially moving the `child` and thus blocking yourself from calling
1090    /// functions on `child` while using `stdout`.
1091    pub stdout: Option<ChildStdout>,
1092
1093    /// The handle for reading from the child's standard error (stderr), if it
1094    /// has been captured. You might find it helpful to do
1095    ///
1096    /// ```no_run
1097    /// # let mut child = tokio::process::Command::new("echo").spawn().unwrap();
1098    /// let stderr = child.stderr.take().unwrap();
1099    /// ```
1100    ///
1101    /// to avoid partially moving the `child` and thus blocking yourself from calling
1102    /// functions on `child` while using `stderr`.
1103    pub stderr: Option<ChildStderr>,
1104}
1105
1106impl Child {
1107    /// Returns the OS-assigned process identifier associated with this child
1108    /// while it is still running.
1109    ///
1110    /// Once the child has been polled to completion this will return `None`.
1111    /// This is done to avoid confusion on platforms like Unix where the OS
1112    /// identifier could be reused once the process has completed.
1113    pub fn id(&self) -> Option<u32> {
1114        match &self.child {
1115            FusedChild::Child(child) => Some(child.inner.id()),
1116            FusedChild::Done(_) => None,
1117        }
1118    }
1119
1120    cfg_windows! {
1121        /// Extracts the raw handle of the process associated with this child while
1122        /// it is still running. Returns `None` if the child has exited.
1123        pub fn raw_handle(&self) -> Option<RawHandle> {
1124            match &self.child {
1125                FusedChild::Child(c) => Some(c.inner.as_raw_handle()),
1126                FusedChild::Done(_) => None,
1127            }
1128        }
1129    }
1130
1131    /// Attempts to force the child to exit, but does not wait for the request
1132    /// to take effect.
1133    ///
1134    /// On Unix platforms, this is the equivalent to sending a `SIGKILL`. Note
1135    /// that on Unix platforms it is possible for a zombie process to remain
1136    /// after a kill is sent; to avoid this, the caller should ensure that either
1137    /// `child.wait().await` or `child.try_wait()` is invoked successfully.
1138    pub fn start_kill(&mut self) -> io::Result<()> {
1139        match &mut self.child {
1140            FusedChild::Child(child) => child.kill(),
1141            FusedChild::Done(_) => Err(io::Error::new(
1142                io::ErrorKind::InvalidInput,
1143                "invalid argument: can't kill an exited process",
1144            )),
1145        }
1146    }
1147
1148    /// Forces the child to exit.
1149    ///
1150    /// This is equivalent to sending a `SIGKILL` on unix platforms.
1151    ///
1152    /// If the child has to be killed remotely, it is possible to do it using
1153    /// a combination of the select! macro and a `oneshot` channel. In the following
1154    /// example, the child will run until completion unless a message is sent on
1155    /// the `oneshot` channel. If that happens, the child is killed immediately
1156    /// using the `.kill()` method.
1157    ///
1158    /// ```no_run
1159    /// use tokio::process::Command;
1160    /// use tokio::sync::oneshot::channel;
1161    ///
1162    /// #[tokio::main]
1163    /// async fn main() {
1164    ///     let (send, recv) = channel::<()>();
1165    ///     let mut child = Command::new("sleep").arg("1").spawn().unwrap();
1166    ///     tokio::spawn(async move { send.send(()) });
1167    ///     tokio::select! {
1168    ///         _ = child.wait() => {}
1169    ///         _ = recv => child.kill().await.expect("kill failed"),
1170    ///     }
1171    /// }
1172    /// ```
1173    pub async fn kill(&mut self) -> io::Result<()> {
1174        self.start_kill()?;
1175        self.wait().await?;
1176        Ok(())
1177    }
1178
1179    /// Waits for the child to exit completely, returning the status that it
1180    /// exited with. This function will continue to have the same return value
1181    /// after it has been called at least once.
1182    ///
1183    /// The stdin handle to the child process, if any, will be closed
1184    /// before waiting. This helps avoid deadlock: it ensures that the
1185    /// child does not block waiting for input from the parent, while
1186    /// the parent waits for the child to exit.
1187    ///
1188    /// If the caller wishes to explicitly control when the child's stdin
1189    /// handle is closed, they may `.take()` it before calling `.wait()`:
1190    ///
1191    /// # Cancel safety
1192    ///
1193    /// This function is cancel safe.
1194    ///
1195    /// ```
1196    /// # if cfg!(miri) { return } // No `pidfd_spawnp` in miri.
1197    /// # #[cfg(not(unix))]fn main(){}
1198    /// # #[cfg(unix)]
1199    /// use tokio::io::AsyncWriteExt;
1200    /// # #[cfg(unix)]
1201    /// use tokio::process::Command;
1202    /// # #[cfg(unix)]
1203    /// use std::process::Stdio;
1204    ///
1205    /// # #[cfg(unix)]
1206    /// #[tokio::main]
1207    /// async fn main() {
1208    ///     let mut child = Command::new("cat")
1209    ///         .stdin(Stdio::piped())
1210    ///         .spawn()
1211    ///         .unwrap();
1212    ///
1213    ///     let mut stdin = child.stdin.take().unwrap();
1214    ///     tokio::spawn(async move {
1215    ///         // do something with stdin here...
1216    ///         stdin.write_all(b"hello world\n").await.unwrap();
1217    ///
1218    ///         // then drop when finished
1219    ///         drop(stdin);
1220    ///     });
1221    ///
1222    ///     // wait for the process to complete
1223    ///     let _ = child.wait().await;
1224    /// }
1225    /// ```
1226    pub async fn wait(&mut self) -> io::Result<ExitStatus> {
1227        // Ensure stdin is closed so the child isn't stuck waiting on
1228        // input while the parent is waiting for it to exit.
1229        drop(self.stdin.take());
1230
1231        match &mut self.child {
1232            FusedChild::Done(exit) => Ok(*exit),
1233            FusedChild::Child(child) => {
1234                let ret = child.await;
1235
1236                if let Ok(exit) = ret {
1237                    self.child = FusedChild::Done(exit);
1238                }
1239
1240                ret
1241            }
1242        }
1243    }
1244
1245    /// Attempts to collect the exit status of the child if it has already
1246    /// exited.
1247    ///
1248    /// This function will not block the calling thread and will only
1249    /// check to see if the child process has exited or not. If the child has
1250    /// exited then on Unix the process ID is reaped. This function is
1251    /// guaranteed to repeatedly return a successful exit status so long as the
1252    /// child has already exited.
1253    ///
1254    /// If the child has exited, then `Ok(Some(status))` is returned. If the
1255    /// exit status is not available at this time then `Ok(None)` is returned.
1256    /// If an error occurs, then that error is returned.
1257    ///
1258    /// Note that unlike `wait`, this function will not attempt to drop stdin,
1259    /// nor will it wake the current task if the child exits.
1260    pub fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
1261        match &mut self.child {
1262            FusedChild::Done(exit) => Ok(Some(*exit)),
1263            FusedChild::Child(guard) => {
1264                let ret = guard.inner.try_wait();
1265
1266                if let Ok(Some(exit)) = ret {
1267                    // Avoid the overhead of trying to kill a reaped process
1268                    guard.kill_on_drop = false;
1269                    self.child = FusedChild::Done(exit);
1270                }
1271
1272                ret
1273            }
1274        }
1275    }
1276
1277    /// Returns a future that will resolve to an `Output`, containing the exit
1278    /// status, stdout, and stderr of the child process.
1279    ///
1280    /// The returned future will simultaneously waits for the child to exit and
1281    /// collect all remaining output on the stdout/stderr handles, returning an
1282    /// `Output` instance.
1283    ///
1284    /// The stdin handle to the child process, if any, will be closed before
1285    /// waiting. This helps avoid deadlock: it ensures that the child does not
1286    /// block waiting for input from the parent, while the parent waits for the
1287    /// child to exit.
1288    ///
1289    /// By default, stdin, stdout and stderr are inherited from the parent. In
1290    /// order to capture the output into this `Output` it is necessary to create
1291    /// new pipes between parent and child. Use `stdout(Stdio::piped())` or
1292    /// `stderr(Stdio::piped())`, respectively, when creating a `Command`.
1293    pub async fn wait_with_output(mut self) -> io::Result<Output> {
1294        use crate::future::try_join3;
1295
1296        async fn read_to_end<A: AsyncRead + Unpin>(io: &mut Option<A>) -> io::Result<Vec<u8>> {
1297            let mut vec = Vec::new();
1298            if let Some(io) = io.as_mut() {
1299                crate::io::util::read_to_end(io, &mut vec).await?;
1300            }
1301            Ok(vec)
1302        }
1303
1304        let mut stdout_pipe = self.stdout.take();
1305        let mut stderr_pipe = self.stderr.take();
1306
1307        let stdout_fut = read_to_end(&mut stdout_pipe);
1308        let stderr_fut = read_to_end(&mut stderr_pipe);
1309
1310        let (status, stdout, stderr) = try_join3(self.wait(), stdout_fut, stderr_fut).await?;
1311
1312        // Drop happens after `try_join` due to <https://github.com/tokio-rs/tokio/issues/4309>
1313        drop(stdout_pipe);
1314        drop(stderr_pipe);
1315
1316        Ok(Output {
1317            status,
1318            stdout,
1319            stderr,
1320        })
1321    }
1322}
1323
1324/// The standard input stream for spawned children.
1325///
1326/// This type implements the `AsyncWrite` trait to pass data to the stdin handle of
1327/// handle of a child process asynchronously.
1328#[derive(Debug)]
1329pub struct ChildStdin {
1330    inner: imp::ChildStdio,
1331}
1332
1333/// The standard output stream for spawned children.
1334///
1335/// This type implements the `AsyncRead` trait to read data from the stdout
1336/// handle of a child process asynchronously.
1337#[derive(Debug)]
1338pub struct ChildStdout {
1339    inner: imp::ChildStdio,
1340}
1341
1342/// The standard error stream for spawned children.
1343///
1344/// This type implements the `AsyncRead` trait to read data from the stderr
1345/// handle of a child process asynchronously.
1346#[derive(Debug)]
1347pub struct ChildStderr {
1348    inner: imp::ChildStdio,
1349}
1350
1351impl ChildStdin {
1352    /// Creates an asynchronous `ChildStdin` from a synchronous one.
1353    ///
1354    /// # Errors
1355    ///
1356    /// This method may fail if an error is encountered when setting the pipe to
1357    /// non-blocking mode, or when registering the pipe with the runtime's IO
1358    /// driver.
1359    pub fn from_std(inner: std::process::ChildStdin) -> io::Result<Self> {
1360        Ok(Self {
1361            inner: imp::stdio(inner)?,
1362        })
1363    }
1364}
1365
1366impl ChildStdout {
1367    /// Creates an asynchronous `ChildStdout` from a synchronous one.
1368    ///
1369    /// # Errors
1370    ///
1371    /// This method may fail if an error is encountered when setting the pipe to
1372    /// non-blocking mode, or when registering the pipe with the runtime's IO
1373    /// driver.
1374    pub fn from_std(inner: std::process::ChildStdout) -> io::Result<Self> {
1375        Ok(Self {
1376            inner: imp::stdio(inner)?,
1377        })
1378    }
1379}
1380
1381impl ChildStderr {
1382    /// Creates an asynchronous `ChildStderr` from a synchronous one.
1383    ///
1384    /// # Errors
1385    ///
1386    /// This method may fail if an error is encountered when setting the pipe to
1387    /// non-blocking mode, or when registering the pipe with the runtime's IO
1388    /// driver.
1389    pub fn from_std(inner: std::process::ChildStderr) -> io::Result<Self> {
1390        Ok(Self {
1391            inner: imp::stdio(inner)?,
1392        })
1393    }
1394}
1395
1396impl AsyncWrite for ChildStdin {
1397    fn poll_write(
1398        mut self: Pin<&mut Self>,
1399        cx: &mut Context<'_>,
1400        buf: &[u8],
1401    ) -> Poll<io::Result<usize>> {
1402        Pin::new(&mut self.inner).poll_write(cx, buf)
1403    }
1404
1405    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
1406        Pin::new(&mut self.inner).poll_flush(cx)
1407    }
1408
1409    fn poll_shutdown(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
1410        Pin::new(&mut self.inner).poll_shutdown(cx)
1411    }
1412
1413    fn poll_write_vectored(
1414        mut self: Pin<&mut Self>,
1415        cx: &mut Context<'_>,
1416        bufs: &[io::IoSlice<'_>],
1417    ) -> Poll<Result<usize, io::Error>> {
1418        Pin::new(&mut self.inner).poll_write_vectored(cx, bufs)
1419    }
1420
1421    fn is_write_vectored(&self) -> bool {
1422        self.inner.is_write_vectored()
1423    }
1424}
1425
1426impl AsyncRead for ChildStdout {
1427    fn poll_read(
1428        mut self: Pin<&mut Self>,
1429        cx: &mut Context<'_>,
1430        buf: &mut ReadBuf<'_>,
1431    ) -> Poll<io::Result<()>> {
1432        Pin::new(&mut self.inner).poll_read(cx, buf)
1433    }
1434}
1435
1436impl AsyncRead for ChildStderr {
1437    fn poll_read(
1438        mut self: Pin<&mut Self>,
1439        cx: &mut Context<'_>,
1440        buf: &mut ReadBuf<'_>,
1441    ) -> Poll<io::Result<()>> {
1442        Pin::new(&mut self.inner).poll_read(cx, buf)
1443    }
1444}
1445
1446impl TryInto<Stdio> for ChildStdin {
1447    type Error = io::Error;
1448
1449    fn try_into(self) -> Result<Stdio, Self::Error> {
1450        imp::convert_to_stdio(self.inner)
1451    }
1452}
1453
1454impl TryInto<Stdio> for ChildStdout {
1455    type Error = io::Error;
1456
1457    fn try_into(self) -> Result<Stdio, Self::Error> {
1458        imp::convert_to_stdio(self.inner)
1459    }
1460}
1461
1462impl TryInto<Stdio> for ChildStderr {
1463    type Error = io::Error;
1464
1465    fn try_into(self) -> Result<Stdio, Self::Error> {
1466        imp::convert_to_stdio(self.inner)
1467    }
1468}
1469
1470#[cfg(unix)]
1471#[cfg_attr(docsrs, doc(cfg(unix)))]
1472mod sys {
1473    use std::{
1474        io,
1475        os::unix::io::{AsFd, AsRawFd, BorrowedFd, OwnedFd, RawFd},
1476    };
1477
1478    use super::{ChildStderr, ChildStdin, ChildStdout};
1479
1480    macro_rules! impl_traits {
1481        ($type:ty) => {
1482            impl $type {
1483                /// Convert into [`OwnedFd`].
1484                pub fn into_owned_fd(self) -> io::Result<OwnedFd> {
1485                    self.inner.into_owned_fd()
1486                }
1487            }
1488
1489            impl AsRawFd for $type {
1490                fn as_raw_fd(&self) -> RawFd {
1491                    self.inner.as_raw_fd()
1492                }
1493            }
1494
1495            impl AsFd for $type {
1496                fn as_fd(&self) -> BorrowedFd<'_> {
1497                    unsafe { BorrowedFd::borrow_raw(self.as_raw_fd()) }
1498                }
1499            }
1500        };
1501    }
1502
1503    impl_traits!(ChildStdin);
1504    impl_traits!(ChildStdout);
1505    impl_traits!(ChildStderr);
1506}
1507
1508#[cfg(any(windows, docsrs))]
1509#[cfg_attr(docsrs, doc(cfg(windows)))]
1510mod windows {
1511    use super::*;
1512    use crate::os::windows::io::{AsHandle, AsRawHandle, BorrowedHandle, OwnedHandle, RawHandle};
1513
1514    #[cfg(not(docsrs))]
1515    macro_rules! impl_traits {
1516        ($type:ty) => {
1517            impl $type {
1518                /// Convert into [`OwnedHandle`].
1519                pub fn into_owned_handle(self) -> io::Result<OwnedHandle> {
1520                    self.inner.into_owned_handle()
1521                }
1522            }
1523
1524            impl AsRawHandle for $type {
1525                fn as_raw_handle(&self) -> RawHandle {
1526                    self.inner.as_raw_handle()
1527                }
1528            }
1529
1530            impl AsHandle for $type {
1531                fn as_handle(&self) -> BorrowedHandle<'_> {
1532                    unsafe { BorrowedHandle::borrow_raw(self.as_raw_handle()) }
1533                }
1534            }
1535        };
1536    }
1537
1538    #[cfg(docsrs)]
1539    macro_rules! impl_traits {
1540        ($type:ty) => {
1541            impl $type {
1542                /// Convert into [`OwnedHandle`].
1543                pub fn into_owned_handle(self) -> io::Result<OwnedHandle> {
1544                    todo!("For doc generation only")
1545                }
1546            }
1547
1548            impl AsRawHandle for $type {
1549                fn as_raw_handle(&self) -> RawHandle {
1550                    todo!("For doc generation only")
1551                }
1552            }
1553
1554            impl AsHandle for $type {
1555                fn as_handle(&self) -> BorrowedHandle<'_> {
1556                    todo!("For doc generation only")
1557                }
1558            }
1559        };
1560    }
1561
1562    impl_traits!(ChildStdin);
1563    impl_traits!(ChildStdout);
1564    impl_traits!(ChildStderr);
1565}
1566
1567#[cfg(all(test, not(loom)))]
1568mod test {
1569    use super::kill::Kill;
1570    use super::ChildDropGuard;
1571
1572    use futures::future::FutureExt;
1573    use std::future::Future;
1574    use std::io;
1575    use std::pin::Pin;
1576    use std::task::{Context, Poll};
1577
1578    struct Mock {
1579        num_kills: usize,
1580        num_polls: usize,
1581        poll_result: Poll<Result<(), ()>>,
1582    }
1583
1584    impl Mock {
1585        fn new() -> Self {
1586            Self::with_result(Poll::Pending)
1587        }
1588
1589        fn with_result(result: Poll<Result<(), ()>>) -> Self {
1590            Self {
1591                num_kills: 0,
1592                num_polls: 0,
1593                poll_result: result,
1594            }
1595        }
1596    }
1597
1598    impl Kill for Mock {
1599        fn kill(&mut self) -> io::Result<()> {
1600            self.num_kills += 1;
1601            Ok(())
1602        }
1603    }
1604
1605    impl Future for Mock {
1606        type Output = Result<(), ()>;
1607
1608        fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
1609            let inner = Pin::get_mut(self);
1610            inner.num_polls += 1;
1611            inner.poll_result
1612        }
1613    }
1614
1615    #[test]
1616    fn kills_on_drop_if_specified() {
1617        let mut mock = Mock::new();
1618
1619        {
1620            let guard = ChildDropGuard {
1621                inner: &mut mock,
1622                kill_on_drop: true,
1623            };
1624            drop(guard);
1625        }
1626
1627        assert_eq!(1, mock.num_kills);
1628        assert_eq!(0, mock.num_polls);
1629    }
1630
1631    #[test]
1632    fn no_kill_on_drop_by_default() {
1633        let mut mock = Mock::new();
1634
1635        {
1636            let guard = ChildDropGuard {
1637                inner: &mut mock,
1638                kill_on_drop: false,
1639            };
1640            drop(guard);
1641        }
1642
1643        assert_eq!(0, mock.num_kills);
1644        assert_eq!(0, mock.num_polls);
1645    }
1646
1647    #[test]
1648    fn no_kill_if_already_killed() {
1649        let mut mock = Mock::new();
1650
1651        {
1652            let mut guard = ChildDropGuard {
1653                inner: &mut mock,
1654                kill_on_drop: true,
1655            };
1656            let _ = guard.kill();
1657            drop(guard);
1658        }
1659
1660        assert_eq!(1, mock.num_kills);
1661        assert_eq!(0, mock.num_polls);
1662    }
1663
1664    #[test]
1665    fn no_kill_if_reaped() {
1666        let mut mock_pending = Mock::with_result(Poll::Pending);
1667        let mut mock_reaped = Mock::with_result(Poll::Ready(Ok(())));
1668        let mut mock_err = Mock::with_result(Poll::Ready(Err(())));
1669
1670        let waker = futures::task::noop_waker();
1671        let mut context = Context::from_waker(&waker);
1672        {
1673            let mut guard = ChildDropGuard {
1674                inner: &mut mock_pending,
1675                kill_on_drop: true,
1676            };
1677            let _ = guard.poll_unpin(&mut context);
1678
1679            let mut guard = ChildDropGuard {
1680                inner: &mut mock_reaped,
1681                kill_on_drop: true,
1682            };
1683            let _ = guard.poll_unpin(&mut context);
1684
1685            let mut guard = ChildDropGuard {
1686                inner: &mut mock_err,
1687                kill_on_drop: true,
1688            };
1689            let _ = guard.poll_unpin(&mut context);
1690        }
1691
1692        assert_eq!(1, mock_pending.num_kills);
1693        assert_eq!(1, mock_pending.num_polls);
1694
1695        assert_eq!(0, mock_reaped.num_kills);
1696        assert_eq!(1, mock_reaped.num_polls);
1697
1698        assert_eq!(1, mock_err.num_kills);
1699        assert_eq!(1, mock_err.num_polls);
1700    }
1701}