halo2curves_axiom/bn256/
engine.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
#![allow(clippy::suspicious_arithmetic_impl)]
use crate::bn256::curve::*;
use crate::bn256::fq::*;
use crate::bn256::fq12::*;
use crate::bn256::fq2::*;
use crate::bn256::fq6::FROBENIUS_COEFF_FQ6_C1;
use crate::bn256::fr::*;
use crate::ff::{Field, PrimeField};
use crate::group::cofactor::CofactorCurveAffine;
use crate::group::Group;
use core::borrow::Borrow;
use core::iter::Sum;
use core::ops::{Add, Mul, MulAssign, Neg, Sub};
use pairing::{Engine, MillerLoopResult, MultiMillerLoop, PairingCurveAffine};
use rand_core::RngCore;
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq};

pub const BN_X: u64 = 4965661367192848881;

// 6U+2 for in NAF form
pub const SIX_U_PLUS_2_NAF: [i8; 65] = [
    0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0,
    1, 1, 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0,
    0, 1, 0, 1, 1,
];

pub const XI_TO_Q_MINUS_1_OVER_2: Fq2 = Fq2 {
    c0: Fq([
        0xe4bbdd0c2936b629,
        0xbb30f162e133bacb,
        0x31a9d1b6f9645366,
        0x253570bea500f8dd,
    ]),
    c1: Fq([
        0xa1d77ce45ffe77c7,
        0x07affd117826d1db,
        0x6d16bd27bb7edc6b,
        0x2c87200285defecc,
    ]),
};

impl PairingCurveAffine for G1Affine {
    type Pair = G2Affine;
    type PairingResult = Gt;

    fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult {
        pairing(self, other)
    }
}

impl PairingCurveAffine for G2Affine {
    type Pair = G1Affine;
    type PairingResult = Gt;

    fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult {
        pairing(other, self)
    }
}

#[derive(Copy, Clone, Debug, Default)]
pub struct Gt(pub(crate) Fq12);

impl std::fmt::Display for Gt {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{self:?}")
    }
}

impl ConstantTimeEq for Gt {
    fn ct_eq(&self, other: &Self) -> Choice {
        self.0.ct_eq(&other.0)
    }
}

impl ConditionallySelectable for Gt {
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        Gt(Fq12::conditional_select(&a.0, &b.0, choice))
    }
}

impl Eq for Gt {}
impl PartialEq for Gt {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        bool::from(self.ct_eq(other))
    }
}

impl Gt {
    /// Returns the group identity, which is $1$.
    pub fn identity() -> Gt {
        Gt(Fq12::ONE)
    }

    /// Doubles this group element.
    pub fn double(&self) -> Gt {
        Gt(self.0.square())
    }
}

impl<'a> Neg for &'a Gt {
    type Output = Gt;

    #[inline]
    fn neg(self) -> Gt {
        // The element is unitary, so we just conjugate.
        let mut u = self.0;
        u.conjugate();
        Gt(u)
    }
}

impl Neg for Gt {
    type Output = Gt;

    #[inline]
    fn neg(self) -> Gt {
        -&self
    }
}

impl<'a, 'b> Add<&'b Gt> for &'a Gt {
    type Output = Gt;

    #[inline]
    fn add(self, rhs: &'b Gt) -> Gt {
        Gt(self.0 * rhs.0)
    }
}

impl<'a, 'b> Sub<&'b Gt> for &'a Gt {
    type Output = Gt;

    #[inline]
    fn sub(self, rhs: &'b Gt) -> Gt {
        self + (-rhs)
    }
}

impl<'a, 'b> Mul<&'b Fr> for &'a Gt {
    type Output = Gt;

    fn mul(self, other: &'b Fr) -> Self::Output {
        let mut acc = Gt::identity();

        for bit in other
            .to_repr()
            .iter()
            .rev()
            .flat_map(|byte| (0..8).rev().map(move |i| Choice::from((byte >> i) & 1u8)))
            .skip(1)
        {
            acc = acc.double();
            acc = Gt::conditional_select(&acc, &(acc + self), bit);
        }

        acc
    }
}

use crate::{
    impl_add_binop_specify_output, impl_binops_additive, impl_binops_additive_specify_output,
    impl_binops_multiplicative, impl_binops_multiplicative_mixed, impl_sub_binop_specify_output,
};
impl_binops_additive!(Gt, Gt);
impl_binops_multiplicative!(Gt, Fr);

impl<T> Sum<T> for Gt
where
    T: Borrow<Gt>,
{
    fn sum<I>(iter: I) -> Self
    where
        I: Iterator<Item = T>,
    {
        iter.fold(Self::identity(), |acc, item| acc + item.borrow())
    }
}

impl Group for Gt {
    type Scalar = Fr;

    fn random(_: impl RngCore) -> Self {
        unimplemented!();
    }

    fn identity() -> Self {
        Self::identity()
    }

    fn generator() -> Self {
        unimplemented!();
    }

    fn is_identity(&self) -> Choice {
        self.ct_eq(&Self::identity())
    }

    #[must_use]
    fn double(&self) -> Self {
        self.double()
    }
}

#[derive(Clone, Debug)]
pub struct G2Prepared {
    pub(crate) coeffs: Vec<(Fq2, Fq2, Fq2)>,
    pub(crate) infinity: bool,
}

impl G2Prepared {
    pub fn is_zero(&self) -> bool {
        self.infinity
    }

    pub fn from_affine(q: G2Affine) -> Self {
        if bool::from(q.is_identity()) {
            return G2Prepared {
                coeffs: vec![],
                infinity: true,
            };
        }

        fn doubling_step(r: &mut G2) -> (Fq2, Fq2, Fq2) {
            // Adaptation of Algorithm 26, https://eprint.iacr.org/2010/354.pdf
            let mut tmp0 = r.x;
            tmp0.square_assign();

            let mut tmp1 = r.y;
            tmp1.square_assign();

            let mut tmp2 = tmp1;
            tmp2.square_assign();

            let mut tmp3 = tmp1;
            tmp3 += &r.x;
            tmp3.square_assign();
            tmp3 -= &tmp0;
            tmp3 -= &tmp2;
            tmp3.double_assign();

            let mut tmp4 = tmp0;
            tmp4.double_assign();
            tmp4 += &tmp0;

            let mut tmp6 = r.x;
            tmp6 += &tmp4;

            let mut tmp5 = tmp4;
            tmp5.square_assign();

            let mut zsquared = r.z;
            zsquared.square_assign();

            r.x = tmp5;
            r.x -= &tmp3;
            r.x -= &tmp3;

            r.z += &r.y;
            r.z.square_assign();
            r.z -= &tmp1;
            r.z -= &zsquared;

            r.y = tmp3;
            r.y -= &r.x;
            r.y.mul_assign(&tmp4);

            tmp2.double_assign();
            tmp2.double_assign();
            tmp2.double_assign();

            r.y -= &tmp2;

            // up to here everything was by algorith, line 11
            // use R instead of new T

            // tmp3 is the first part of line 12
            tmp3 = tmp4;
            tmp3.mul_assign(&zsquared);
            tmp3.double_assign();
            tmp3 = tmp3.neg();

            // tmp6 is from line 14
            tmp6.square_assign();
            tmp6 -= &tmp0;
            tmp6 -= &tmp5;

            tmp1.double_assign();
            tmp1.double_assign();

            tmp6 -= &tmp1;

            // tmp0 is the first part of line 16
            tmp0 = r.z;
            tmp0.mul_assign(&zsquared);
            tmp0.double_assign();

            (tmp0, tmp3, tmp6)
        }

        fn addition_step(r: &mut G2, q: &G2Affine) -> (Fq2, Fq2, Fq2) {
            // Adaptation of Algorithm 27, https://eprint.iacr.org/2010/354.pdf
            let mut zsquared = r.z;
            zsquared.square_assign();

            let mut ysquared = q.y;
            ysquared.square_assign();

            // t0 corresponds to line 1
            let mut t0 = zsquared;
            t0.mul_assign(&q.x);

            // t1 corresponds to lines 2 and 3
            let mut t1 = q.y;
            t1 += &r.z;
            t1.square_assign();
            t1 -= &ysquared;
            t1 -= &zsquared;
            t1.mul_assign(&zsquared);

            // t2 corresponds to line 4
            let mut t2 = t0;
            t2 -= &r.x;

            // t3 corresponds to line 5
            let mut t3 = t2;
            t3.square_assign();

            // t4 corresponds to line 6
            let mut t4 = t3;
            t4.double_assign();
            t4.double_assign();

            // t5 corresponds to line 7
            let mut t5 = t4;
            t5.mul_assign(&t2);

            // t6 corresponds to line 8
            let mut t6 = t1;
            t6 -= &r.y;
            t6 -= &r.y;

            // t9 corresponds to line 9
            let mut t9 = t6;
            t9.mul_assign(&q.x);

            // corresponds to line 10
            let mut t7 = t4;
            t7.mul_assign(&r.x);

            // corresponds to line 11, but assigns to r.x instead of T.x
            r.x = t6;
            r.x.square_assign();
            r.x -= &t5;
            r.x -= &t7;
            r.x -= &t7;

            // corresponds to line 12, but assigns to r.z instead of T.z
            r.z += &t2;
            r.z.square_assign();
            r.z -= &zsquared;
            r.z -= &t3;

            // corresponds to line 13
            let mut t10 = q.y;
            t10 += &r.z;

            // corresponds to line 14
            let mut t8 = t7;
            t8 -= &r.x;
            t8.mul_assign(&t6);

            // corresponds to line 15
            t0 = r.y;
            t0.mul_assign(&t5);
            t0.double_assign();

            // corresponds to line 12, but assigns to r.y instead of T.y
            r.y = t8;
            r.y -= &t0;

            // corresponds to line 17
            t10.square_assign();
            t10 -= &ysquared;

            let mut ztsquared = r.z;
            ztsquared.square_assign();

            t10 -= &ztsquared;

            // corresponds to line 18
            t9.double_assign();
            t9 -= &t10;

            // t10 = 2*Zt from Algo 27, line 19
            t10 = r.z;
            t10.double_assign();

            // t1 = first multiplicator of line 21
            t6 = t6.neg();

            t1 = t6;
            t1.double_assign();

            // t9 corresponds to t9 from Algo 27
            (t10, t1, t9)
        }

        let mut coeffs = vec![];
        let mut r: G2 = q.into();

        let mut negq = q;
        negq = -negq;

        for i in (1..SIX_U_PLUS_2_NAF.len()).rev() {
            coeffs.push(doubling_step(&mut r));
            let x = SIX_U_PLUS_2_NAF[i - 1];
            match x {
                1 => {
                    coeffs.push(addition_step(&mut r, &q));
                }
                -1 => {
                    coeffs.push(addition_step(&mut r, &negq));
                }
                _ => continue,
            }
        }

        let mut q1 = q;

        q1.x.c1 = q1.x.c1.neg();
        q1.x.mul_assign(&FROBENIUS_COEFF_FQ6_C1[1]);

        q1.y.c1 = q1.y.c1.neg();
        q1.y.mul_assign(&XI_TO_Q_MINUS_1_OVER_2);

        coeffs.push(addition_step(&mut r, &q1));

        let mut minusq2 = q;
        minusq2.x.mul_assign(&FROBENIUS_COEFF_FQ6_C1[2]);

        coeffs.push(addition_step(&mut r, &minusq2));

        G2Prepared {
            coeffs,
            infinity: false,
        }
    }
}

impl From<G2Affine> for G2Prepared {
    fn from(q: G2Affine) -> G2Prepared {
        G2Prepared::from_affine(q)
    }
}

impl MillerLoopResult for Gt {
    type Gt = Self;
    // pub fn final_exponentiation(r: &Fq12) -> CtOption<Fq12> {
    fn final_exponentiation(&self) -> Gt {
        fn exp_by_x(f: &mut Fq12) {
            let x = BN_X;
            let mut res = Fq12::ONE;
            for i in (0..64).rev() {
                res.cyclotomic_square();
                if ((x >> i) & 1) == 1 {
                    res.mul_assign(f);
                }
            }
            *f = res;
        }

        let r = self.0;
        let mut f1 = self.0;
        f1.conjugate();

        Gt(r.invert()
            .map(|mut f2| {
                let mut r = f1;
                r.mul_assign(&f2);
                f2 = r;
                r.frobenius_map(2);
                r.mul_assign(&f2);

                let mut fp = r;
                fp.frobenius_map(1);

                let mut fp2 = r;
                fp2.frobenius_map(2);
                let mut fp3 = fp2;
                fp3.frobenius_map(1);

                let mut fu = r;
                exp_by_x(&mut fu);

                let mut fu2 = fu;
                exp_by_x(&mut fu2);

                let mut fu3 = fu2;
                exp_by_x(&mut fu3);

                let mut y3 = fu;
                y3.frobenius_map(1);

                let mut fu2p = fu2;
                fu2p.frobenius_map(1);

                let mut fu3p = fu3;
                fu3p.frobenius_map(1);

                let mut y2 = fu2;
                y2.frobenius_map(2);

                let mut y0 = fp;
                y0.mul_assign(&fp2);
                y0.mul_assign(&fp3);

                let mut y1 = r;
                y1.conjugate();

                let mut y5 = fu2;
                y5.conjugate();

                y3.conjugate();

                let mut y4 = fu;
                y4.mul_assign(&fu2p);
                y4.conjugate();

                let mut y6 = fu3;
                y6.mul_assign(&fu3p);
                y6.conjugate();

                y6.cyclotomic_square();
                y6.mul_assign(&y4);
                y6.mul_assign(&y5);

                let mut t1 = y3;
                t1.mul_assign(&y5);
                t1.mul_assign(&y6);

                y6.mul_assign(&y2);

                t1.cyclotomic_square();
                t1.mul_assign(&y6);
                t1.cyclotomic_square();

                let mut t0 = t1;
                t0.mul_assign(&y1);

                t1.mul_assign(&y0);

                t0.cyclotomic_square();
                t0.mul_assign(&t1);

                t0
            })
            .unwrap())
    }
}

pub fn multi_miller_loop(terms: &[(&G1Affine, &G2Prepared)]) -> Gt {
    let mut pairs = vec![];
    for &(p, q) in terms {
        if !bool::from(p.is_identity()) && !q.is_zero() {
            pairs.push((p, q.coeffs.iter()));
        }
    }

    // Final steps of the line function on prepared coefficients
    fn ell(f: &mut Fq12, coeffs: &(Fq2, Fq2, Fq2), p: &G1Affine) {
        let mut c0 = coeffs.0;
        let mut c1 = coeffs.1;

        c0.c0.mul_assign(&p.y);
        c0.c1.mul_assign(&p.y);

        c1.c0.mul_assign(&p.x);
        c1.c1.mul_assign(&p.x);

        // Sparse multiplication in Fq12
        f.mul_by_034(&c0, &c1, &coeffs.2);
    }

    let mut f = Fq12::ONE;

    for i in (1..SIX_U_PLUS_2_NAF.len()).rev() {
        if i != SIX_U_PLUS_2_NAF.len() - 1 {
            f.square_assign();
        }
        for &mut (p, ref mut coeffs) in &mut pairs {
            ell(&mut f, coeffs.next().unwrap(), p);
        }
        let x = SIX_U_PLUS_2_NAF[i - 1];
        match x {
            1 => {
                for &mut (p, ref mut coeffs) in &mut pairs {
                    ell(&mut f, coeffs.next().unwrap(), p);
                }
            }
            -1 => {
                for &mut (p, ref mut coeffs) in &mut pairs {
                    ell(&mut f, coeffs.next().unwrap(), p);
                }
            }
            _ => continue,
        }
    }

    for &mut (p, ref mut coeffs) in &mut pairs {
        ell(&mut f, coeffs.next().unwrap(), p);
    }

    for &mut (p, ref mut coeffs) in &mut pairs {
        ell(&mut f, coeffs.next().unwrap(), p);
    }

    for &mut (_p, ref mut coeffs) in &mut pairs {
        assert_eq!(coeffs.next(), None);
    }

    Gt(f)
}

pub fn pairing(g1: &G1Affine, g2: &G2Affine) -> Gt {
    let g2 = G2Prepared::from_affine(*g2);
    let terms: &[(&G1Affine, &G2Prepared)] = &[(g1, &g2)];
    let u = multi_miller_loop(terms);
    u.final_exponentiation()
}

#[derive(Clone, Debug)]
pub struct Bn256;

impl Engine for Bn256 {
    type Fr = Fr;
    type G1 = G1;
    type G1Affine = G1Affine;
    type G2 = G2;
    type G2Affine = G2Affine;
    type Gt = Gt;

    fn pairing(p: &Self::G1Affine, q: &Self::G2Affine) -> Self::Gt {
        pairing(p, q)
    }
}

impl MultiMillerLoop for Bn256 {
    type G2Prepared = G2Prepared;
    type Result = Gt;

    fn multi_miller_loop(terms: &[(&Self::G1Affine, &Self::G2Prepared)]) -> Self::Result {
        multi_miller_loop(terms)
    }
}

#[cfg(test)]
use rand::SeedableRng;
#[cfg(test)]
use rand_xorshift::XorShiftRng;

#[test]
fn test_pairing() {
    let g1 = G1::generator();
    let mut g2 = G2::generator();
    g2 = g2.double();
    let pair12 = Bn256::pairing(&G1Affine::from(g1), &G2Affine::from(g2));

    let mut g1 = G1::generator();
    let g2 = G2::generator();
    g1 = g1.double();
    let pair21 = Bn256::pairing(&G1Affine::from(g1), &G2Affine::from(g2));

    assert_eq!(pair12, pair21);

    let g1 = G1::generator();
    let mut g2 = G2::generator();
    g2 = g2.double().double();
    let pair12 = Bn256::pairing(&G1Affine::from(g1), &G2Affine::from(g2));

    let mut g1 = G1::generator();
    let mut g2 = G2::generator();
    g1 = g1.double();
    g2 = g2.double();
    let pair21 = Bn256::pairing(&G1Affine::from(g1), &G2Affine::from(g2));

    assert_eq!(pair12, pair21);

    let mut rng = XorShiftRng::from_seed([
        0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
        0xe5,
    ]);
    for _ in 0..1000 {
        let a = Fr::random(&mut rng);
        let b = Fr::random(&mut rng);

        let mut g1 = G1::generator();
        g1.mul_assign(a);

        let mut g2 = G2::generator();
        g1.mul_assign(b);

        let pair_ab = Bn256::pairing(&G1Affine::from(g1), &G2Affine::from(g2));

        g1 = G1::generator();
        g1.mul_assign(b);

        g2 = G2::generator();
        g1.mul_assign(a);

        let pair_ba = Bn256::pairing(&G1Affine::from(g1), &G2Affine::from(g2));

        assert_eq!(pair_ab, pair_ba);
    }
}

#[test]
fn random_bilinearity_tests() {
    let mut rng = XorShiftRng::from_seed([
        0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
        0xe5,
    ]);

    for _ in 0..1000 {
        let mut a = G1::generator();
        let ka = Fr::random(&mut rng);
        a.mul_assign(ka);

        let mut b = G2::generator();
        let kb = Fr::random(&mut rng);
        b.mul_assign(kb);

        let c = Fr::random(&mut rng);
        let d = Fr::random(&mut rng);

        let mut ac = a;
        ac.mul_assign(c);

        let mut ad = a;
        ad.mul_assign(d);

        let mut bc = b;
        bc.mul_assign(c);

        let mut bd = b;
        bd.mul_assign(d);

        let acbd = Bn256::pairing(&G1Affine::from(ac), &G2Affine::from(bd));
        let adbc = Bn256::pairing(&G1Affine::from(ad), &G2Affine::from(bc));

        let mut cd = c;
        cd.mul_assign(&d);

        cd *= Fr([1, 0, 0, 0]);

        let abcd = Gt(Bn256::pairing(&G1Affine::from(a), &G2Affine::from(b))
            .0
            .pow_vartime(cd.0));

        assert_eq!(acbd, adbc);
        assert_eq!(acbd, abcd);
    }
}

#[test]
pub fn engine_tests() {
    let mut rng = XorShiftRng::from_seed([
        0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
        0xe5,
    ]);

    for _ in 0..10 {
        let a = G1Affine::from(G1::random(&mut rng));
        let b = G2Affine::from(G2::random(&mut rng));

        assert!(a.pairing_with(&b) == b.pairing_with(&a));
        assert!(a.pairing_with(&b) == pairing(&a, &b));
    }

    for _ in 0..1000 {
        let z1 = G1Affine::identity();
        let z2 = G2Prepared::from(G2Affine::identity());

        let a = G1Affine::from(G1::random(&mut rng));
        let b = G2Prepared::from(G2Affine::from(G2::random(&mut rng)));
        let c = G1Affine::from(G1::random(&mut rng));
        let d = G2Prepared::from(G2Affine::from(G2::random(&mut rng)));

        assert_eq!(
            Fq12::ONE,
            multi_miller_loop(&[(&z1, &b)]).final_exponentiation().0,
        );

        assert_eq!(
            Fq12::ONE,
            multi_miller_loop(&[(&a, &z2)]).final_exponentiation().0,
        );

        assert_eq!(
            multi_miller_loop(&[(&z1, &b), (&c, &d)]).final_exponentiation(),
            multi_miller_loop(&[(&a, &z2), (&c, &d)]).final_exponentiation(),
        );

        assert_eq!(
            multi_miller_loop(&[(&a, &b), (&z1, &d)]).final_exponentiation(),
            multi_miller_loop(&[(&a, &b), (&c, &z2)]).final_exponentiation(),
        );
    }
}

#[test]
fn random_miller_loop_tests() {
    let mut rng = XorShiftRng::from_seed([
        0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
        0xe5,
    ]);

    // Exercise a double miller loop
    for _ in 0..1000 {
        let a = G1Affine::from(G1::random(&mut rng));
        let b = G2Affine::from(G2::random(&mut rng));
        let c = G1Affine::from(G1::random(&mut rng));
        let d = G2Affine::from(G2::random(&mut rng));

        let ab = pairing(&a, &b);
        let cd = pairing(&c, &d);

        let mut abcd = ab;
        abcd = Gt(abcd.0 * cd.0);

        let b = G2Prepared::from(b);
        let d = G2Prepared::from(d);

        let abcd_with_double_loop = multi_miller_loop(&[(&a, &b), (&c, &d)]).final_exponentiation();

        assert_eq!(abcd, abcd_with_double_loop);
    }
}