halo2curves_axiom/ff_ext/
jacobi.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
use core::cmp::PartialEq;
use std::ops::{Add, Mul, Neg, Shr, Sub};

/// Big signed (64 * L)-bit integer type, whose variables store
/// numbers in the two's complement code as arrays of 64-bit chunks.
/// The ordering of the chunks in these arrays is little-endian.
/// The arithmetic operations for this type are wrapping ones
#[derive(Clone)]
pub struct LInt<const L: usize>([u64; L]);

impl<const L: usize> LInt<L> {
    /// Representation of -1
    pub const MINUS_ONE: Self = Self([u64::MAX; L]);

    /// Representation of 0
    pub const ZERO: Self = Self([0; L]);

    /// Representation of 1
    pub const ONE: Self = {
        let mut data = [0; L];
        data[0] = 1;
        Self(data)
    };

    /// Returns the number, which is stored as the specified
    /// sequence padded with zeros to length L. If the input
    /// sequence is longer than L, the method panics
    pub fn new(data: &[u64]) -> Self {
        let mut number = Self::ZERO;
        number.0[..data.len()].copy_from_slice(data);
        number
    }

    /// Returns "true" iff the current number is negative
    #[inline]
    pub fn is_negative(&self) -> bool {
        self.0[L - 1] > (u64::MAX >> 1)
    }

    /// Returns a tuple representing the sum of the first two arguments and the bit
    /// described by the third argument. The first element of the tuple is this sum
    /// modulo 2^64, the second one indicates whether the sum is no less than 2^64
    #[inline]
    fn sum(first: u64, second: u64, carry: bool) -> (u64, bool) {
        // The implementation is inspired with the "carrying_add" function from this source:
        // https://github.com/rust-lang/rust/blob/master/library/core/src/num/uint_macros.rs
        let (second, carry) = second.overflowing_add(carry as u64);
        let (first, high) = first.overflowing_add(second);
        (first, carry || high)
    }

    /// Returns "(low, high)", where "high * 2^64 + low = first * second + carry + summand"
    #[inline]
    fn prodsum(first: u64, second: u64, summand: u64, carry: u64) -> (u64, u64) {
        let all = (first as u128) * (second as u128) + (carry as u128) + (summand as u128);
        (all as u64, (all >> u64::BITS) as u64)
    }
}

impl<const L: usize> PartialEq for LInt<L> {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}

impl<const L: usize> Shr<u32> for &LInt<L> {
    type Output = LInt<L>;
    /// Returns the result of applying the arithmetic right shift to the current number.
    /// The specified bit quantity the number is shifted by must lie in {1, 2, ..., 63}.
    /// For the quantities outside of the range, the behavior of the method is undefined
    fn shr(self, bits: u32) -> Self::Output {
        debug_assert!(
            (bits > 0) && (bits < 64),
            "Cannot shift by 0 or more than 63 bits!"
        );
        let (mut data, right) = ([0; L], u64::BITS - bits);

        for (i, d) in data.iter_mut().enumerate().take(L - 1) {
            *d = (self.0[i] >> bits) | (self.0[i + 1] << right);
        }
        data[L - 1] = self.0[L - 1] >> bits;
        if self.is_negative() {
            data[L - 1] |= u64::MAX << right;
        }
        LInt::<L>(data)
    }
}

impl<const L: usize> Shr<u32> for LInt<L> {
    type Output = LInt<L>;
    fn shr(self, bits: u32) -> Self::Output {
        &self >> bits
    }
}

impl<const L: usize> Add for &LInt<L> {
    type Output = LInt<L>;
    fn add(self, other: Self) -> Self::Output {
        let (mut data, mut carry) = ([0; L], false);
        for (i, d) in data.iter_mut().enumerate().take(L) {
            (*d, carry) = Self::Output::sum(self.0[i], other.0[i], carry);
        }
        LInt::<L>(data)
    }
}

impl<const L: usize> Add<&LInt<L>> for LInt<L> {
    type Output = LInt<L>;
    fn add(self, other: &Self) -> Self::Output {
        &self + other
    }
}

impl<const L: usize> Add for LInt<L> {
    type Output = LInt<L>;
    fn add(self, other: Self) -> Self::Output {
        &self + &other
    }
}

impl<const L: usize> Sub for &LInt<L> {
    type Output = LInt<L>;
    fn sub(self, other: Self) -> Self::Output {
        // For the two's complement code the additive negation is the result of
        // adding 1 to the bitwise inverted argument's representation. Thus, for
        // any encoded integers x and y we have x - y = x + !y + 1, where "!" is
        // the bitwise inversion and addition is done according to the rules of
        // the code. The algorithm below uses this formula and is the modified
        // addition algorithm, where the carry flag is initialized with "true"
        // and the chunks of the second argument are bitwise inverted
        let (mut data, mut carry) = ([0; L], true);
        for (i, d) in data.iter_mut().enumerate().take(L) {
            (*d, carry) = Self::Output::sum(self.0[i], !other.0[i], carry);
        }
        LInt::<L>(data)
    }
}

impl<const L: usize> Sub<&LInt<L>> for LInt<L> {
    type Output = LInt<L>;
    fn sub(self, other: &Self) -> Self::Output {
        &self - other
    }
}

impl<const L: usize> Sub for LInt<L> {
    type Output = LInt<L>;
    fn sub(self, other: Self) -> Self::Output {
        &self - &other
    }
}

impl<const L: usize> Neg for &LInt<L> {
    type Output = LInt<L>;
    fn neg(self) -> Self::Output {
        // For the two's complement code the additive negation is the result
        // of adding 1 to the bitwise inverted argument's representation
        let (mut data, mut carry) = ([0; L], true);
        for (i, d) in data.iter_mut().enumerate().take(L) {
            (*d, carry) = (!self.0[i]).overflowing_add(carry as u64);
        }
        LInt::<L>(data)
    }
}

impl<const L: usize> Neg for LInt<L> {
    type Output = LInt<L>;
    fn neg(self) -> Self::Output {
        -&self
    }
}

impl<const L: usize> Mul for &LInt<L> {
    type Output = LInt<L>;
    fn mul(self, other: Self) -> Self::Output {
        let mut data = [0; L];
        for i in 0..L {
            let mut carry = 0;
            for k in 0..(L - i) {
                (data[i + k], carry) =
                    Self::Output::prodsum(self.0[i], other.0[k], data[i + k], carry);
            }
        }
        LInt::<L>(data)
    }
}

impl<const L: usize> Mul<&LInt<L>> for LInt<L> {
    type Output = LInt<L>;
    fn mul(self, other: &Self) -> Self::Output {
        &self * other
    }
}

impl<const L: usize> Mul for LInt<L> {
    type Output = LInt<L>;
    fn mul(self, other: Self) -> Self::Output {
        &self * &other
    }
}

impl<const L: usize> Mul<i64> for &LInt<L> {
    type Output = LInt<L>;
    fn mul(self, other: i64) -> Self::Output {
        let mut data = [0; L];
        // If the short multiplicand is non-negative, the standard multiplication
        // algorithm is performed. Otherwise, the product of the additively negated
        // multiplicands is found as follows. Since for the two's complement code
        // the additive negation is the result of adding 1 to the bitwise inverted
        // argument's representation, for any encoded integers x and y we have
        // x * y = (-x) * (-y) = (!x + 1) * (-y) = !x * (-y) + (-y),  where "!" is
        // the bitwise inversion and arithmetic operations are performed according
        // to the rules of the code. If the short multiplicand is negative, the
        // algorithm below uses this formula by substituting the short multiplicand
        // for y and becomes the modified standard multiplication algorithm, where
        // the carry variable is being initialized with the additively negated short
        // multiplicand and the chunks of the long multiplicand are bitwise inverted
        let (other, mut carry, mask) = if other < 0 {
            (-other as u64, -other as u64, u64::MAX)
        } else {
            (other as u64, 0, 0)
        };
        for (i, d) in data.iter_mut().enumerate().take(L) {
            (*d, carry) = Self::Output::prodsum(self.0[i] ^ mask, other, 0, carry);
        }
        LInt::<L>(data)
    }
}

impl<const L: usize> Mul<i64> for LInt<L> {
    type Output = LInt<L>;
    fn mul(self, other: i64) -> Self::Output {
        &self * other
    }
}

impl<const L: usize> Mul<&LInt<L>> for i64 {
    type Output = LInt<L>;
    fn mul(self, other: &LInt<L>) -> Self::Output {
        other * self
    }
}

impl<const L: usize> Mul<LInt<L>> for i64 {
    type Output = LInt<L>;
    fn mul(self, other: LInt<L>) -> Self::Output {
        other * self
    }
}

/// Returns the "approximations" of the arguments and the flag indicating whether
/// both arguments are equal to their "approximations". Both the arguments must be
/// non-negative, and at least one of them must be non-zero. For an incorrect input,
/// the behavior of the function is undefined. These "approximations" are defined
/// in the following way. Let n be the bit length of the largest argument without
/// leading zeros. For n > 64 the "approximation" of the argument, which equals v,
/// is (v div 2 ^ (n - 32)) * 2 ^ 32 + (v mod 2 ^ 32), i.e. it retains the high and
/// low bits of the n-bit representation of v. If n does not exceed 64, an argument
/// and its "approximation" are equal. These "approximations" are defined slightly
/// differently from the ones in the Pornin's method for modular inversion: instead
/// of taking the 33 high and 31 low bits of the n-bit representation of an argument,
/// the 32 high and 32 low bits are taken
fn approximate<const L: usize>(x: &LInt<L>, y: &LInt<L>) -> (u64, u64, bool) {
    debug_assert!(
        !(x.is_negative() || y.is_negative()),
        "Both the arguments must be non-negative!"
    );
    debug_assert!(
        (*x != LInt::ZERO) || (*y != LInt::ZERO),
        "At least one argument must be non-zero!"
    );
    let mut i = L - 1;
    while (x.0[i] == 0) && (y.0[i] == 0) {
        i -= 1;
    }
    if i == 0 {
        return (x.0[0], y.0[0], true);
    }
    let mut h = (x.0[i], y.0[i]);
    let z = h.0.leading_zeros().min(h.1.leading_zeros());
    h = (h.0 << z, h.1 << z);
    if z > 32 {
        h.0 |= x.0[i - 1] >> z;
        h.1 |= y.0[i - 1] >> z;
    }
    let h = (h.0 & u64::MAX << 32, h.1 & u64::MAX << 32);
    let l = (x.0[0] & u64::MAX >> 32, y.0[0] & u64::MAX >> 32);
    (h.0 | l.0, h.1 | l.1, false)
}

/// Returns the Jacobi symbol ("n" / "d") multiplied by either 1 or -1.
/// The later multiplicand is -1 iff the second-lowest bit of "t" is 1.
/// The value of "d" must be odd in accordance with the Jacobi symbol
/// definition. For even values of "d", the behavior is not defined.
/// The implementation is based on the binary Euclidean algorithm
fn jacobinary(mut n: u64, mut d: u64, mut t: u64) -> i64 {
    debug_assert!(d & 1 > 0, "The second argument must be odd!");
    while n != 0 {
        if n & 1 > 0 {
            if n < d {
                (n, d) = (d, n);
                t ^= n & d;
            }
            n = (n - d) >> 1;
            t ^= d ^ d >> 1;
        } else {
            let z = n.trailing_zeros();
            t ^= (d ^ d >> 1) & (z << 1) as u64;
            n >>= z;
        }
    }
    (d == 1) as i64 * (1 - (t & 2) as i64)
}

/// Returns the Jacobi symbol ("n" / "d") computed by means of the modification
/// of the the Pornin's method for modular inversion. The arguments are unsigned
/// big integers in the form of arrays of 64-bit chunks, the ordering of which
/// is little-endian. The value of "d" must be odd in accordance with the Jacobi
/// symbol definition. Both the arguments must be less than 2 ^ (64 * L - 31).
/// For an incorrect input, the behavior of the function is undefined. The method
/// differs from the Pornin's method for modular inversion in absence of the parts,
/// which are not necessary to compute the greatest common divisor of arguments,
/// presence of the parts used to compute the Jacobi symbol, which are based on
/// the properties of the modified Jacobi symbol (x / |y|) described by M. Hamburg,
/// and some original optimizations. Only these differences have been commented;
/// the aforesaid Pornin's method and the used ideas of M. Hamburg were given here:
/// - T. Pornin, "Optimized Binary GCD for Modular Inversion",
/// <https://eprint.iacr.org/2020/972.pdf>
/// - M. Hamburg, "Computing the Jacobi symbol using Bernstein-Yang",
/// <https://eprint.iacr.org/2021/1271.pdf>
pub fn jacobi<const L: usize>(n: &[u64], d: &[u64]) -> i64 {
    // Instead of the variable "j" taking the values from {-1, 1} and satysfying
    // at the end of the outer loop iteration the equation J = "j" * ("n" / |"d"|)
    // for the modified Jacobi symbol ("n" / |"d"|) and the sought Jacobi symbol J,
    // we store the sign bit of "j" in the second-lowest bit of "t" for optimization
    // purposes. This approach was influenced by the paper by M. Hamburg
    let (mut n, mut d, mut t) = (LInt::<L>::new(n), LInt::<L>::new(d), 0u64);
    debug_assert!(d.0[0] & 1 > 0, "The second argument must be odd!");
    debug_assert!(
        n.0[L - 1].leading_zeros().min(d.0[L - 1].leading_zeros()) >= 31,
        "Both the arguments must be less than 2 ^ (64 * L - 31)!"
    );
    loop {
        // The inner loop performs 30 iterations instead of 31 ones in the aforementioned
        // Pornin's method, and the "approximations" of "n" and "d" retain 32 of the lowest
        // bits instead of 31 in that method. These modifications allow the values of the
        // "approximation" variables to be equal modulo 8 to the corresponding "precise"
        // variables' values, which would have been computed, if the "precise" variables
        // had been updated in the inner loop along with the "approximations". This equality
        // modulo 8 is used to update the second-lowest bit of "t" in accordance with the
        // properties of the modified Jacobi symbol (x / |y|). The admissibility of these
        // modifications has been proven using the appropriately modified Pornin's theorems
        let (mut u, mut v, mut i) = ((1i64, 0i64), (0i64, 1i64), 30);
        let (mut a, mut b, precise) = approximate(&n, &d);
        // When each "approximation" variable has the same value as the corresponding "precise"
        // one, the computation is accomplished using the short-arithmetic method of the Jacobi
        // symbol calculation by means of the binary Euclidean algorithm. This approach aims at
        // avoiding the parts of the final computations, which are related to long arithmetics
        if precise {
            return jacobinary(a, b, t);
        }
        while i > 0 {
            if a & 1 > 0 {
                if a < b {
                    (a, b, u, v) = (b, a, v, u);
                    // In both the aforesaid Pornin's method and its modification "n" and "d"
                    // could not become negative simultaneously even if they were updated after
                    // each iteration of the inner loop. Also at this point they both have odd
                    // values. Therefore, the quadratic reciprocity law for the modified Jacobi
                    // symbol (x / |y|) can be used. According to it, if both x and y are odd
                    // numbers, among which there is a positive one, then for x = y = 3 (mod 4)
                    // we have (x / |y|) = -(y / |x|) and for either x or y equal 1 modulo 4
                    // the symbols (x / |y|) and (y / |x|) are equal
                    t ^= a & b;
                }
                a = (a - b) >> 1;
                u = (u.0 - v.0, u.1 - v.1);
                v = (v.0 << 1, v.1 << 1);
                // The modified Jacobi symbol (2 / |y|) is -1, iff y mod 8 is {3, 5}
                t ^= b ^ b >> 1;
                i -= 1;
            } else {
                // Performing the batch of sequential iterations, which divide "a" by 2
                let z = i.min(a.trailing_zeros());
                // The modified Jacobi symbol (2 / |y|) is -1, iff y mod 8 is {3, 5}. However,
                // we do not need its value for a batch with an even number of divisions by 2
                t ^= (b ^ b >> 1) & (z << 1) as u64;
                v = (v.0 << z, v.1 << z);
                a >>= z;
                i -= z;
            }
        }
        (n, d) = ((&n * u.0 + &d * u.1) >> 30, (&n * v.0 + &d * v.1) >> 30);

        // This fragment is present to guarantee the correct behavior of the function
        // in the case of arguments, whose greatest common divisor is no less than 2^64
        if n == LInt::ZERO {
            // In both the aforesaid Pornin's method and its modification the pair of the values
            // of "n" and "d" after the divergence point contains a positive number and a negative
            // one. Since the value of "n" is 0, the divergence point has not been reached by the
            // inner loop this time, so there is no need to check whether "d" is equal to -1
            return (d == LInt::ONE) as i64 * (1 - (t & 2) as i64);
        }

        if n.is_negative() {
            // Since in both the aforesaid Pornin's method and its modification "d" is always odd
            // and cannot become negative simultaneously with "n", the value of "d" is positive.
            // The modified Jacobi symbol (-1 / |y|) for a positive y is -1, iff y mod 4 = 3
            t ^= d.0[0];
            n = -n;
        } else if d.is_negative() {
            // The modified Jacobi symbols (x / |y|) and (x / |-y|) are equal, so "t" is not updated
            d = -d;
        }
    }
}