1use crate::fp::Fp;
2use crate::fp12::Fp12;
3use crate::fp2::Fp2;
4use crate::fp6::Fp6;
5use crate::{G1Affine, G1Projective, G2Affine, G2Projective, Scalar, BLS_X, BLS_X_IS_NEGATIVE};
6
7use core::borrow::Borrow;
8use core::fmt;
9use core::iter::Sum;
10use core::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
11use group::Group;
12use pairing::{Engine, PairingCurveAffine};
13use rand_core::RngCore;
14use subtle::{Choice, ConditionallySelectable, ConstantTimeEq};
15
16#[cfg(feature = "alloc")]
17use alloc::vec::Vec;
18#[cfg(feature = "alloc")]
19use pairing::MultiMillerLoop;
20
21#[cfg_attr(docsrs, doc(cfg(feature = "pairings")))]
25#[derive(Copy, Clone, Debug)]
26pub struct MillerLoopResult(pub(crate) Fp12);
27
28impl Default for MillerLoopResult {
29 fn default() -> Self {
30 MillerLoopResult(Fp12::one())
31 }
32}
33
34#[cfg(feature = "zeroize")]
35impl zeroize::DefaultIsZeroes for MillerLoopResult {}
36
37impl ConditionallySelectable for MillerLoopResult {
38 fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
39 MillerLoopResult(Fp12::conditional_select(&a.0, &b.0, choice))
40 }
41}
42
43impl MillerLoopResult {
44 pub fn final_exponentiation(&self) -> Gt {
49 #[must_use]
50 fn fp4_square(a: Fp2, b: Fp2) -> (Fp2, Fp2) {
51 let t0 = a.square();
52 let t1 = b.square();
53 let mut t2 = t1.mul_by_nonresidue();
54 let c0 = t2 + t0;
55 t2 = a + b;
56 t2 = t2.square();
57 t2 -= t0;
58 let c1 = t2 - t1;
59
60 (c0, c1)
61 }
62 #[must_use]
66 fn cyclotomic_square(f: Fp12) -> Fp12 {
67 let mut z0 = f.c0.c0;
68 let mut z4 = f.c0.c1;
69 let mut z3 = f.c0.c2;
70 let mut z2 = f.c1.c0;
71 let mut z1 = f.c1.c1;
72 let mut z5 = f.c1.c2;
73
74 let (t0, t1) = fp4_square(z0, z1);
75
76 z0 = t0 - z0;
78 z0 = z0 + z0 + t0;
79
80 z1 = t1 + z1;
81 z1 = z1 + z1 + t1;
82
83 let (mut t0, t1) = fp4_square(z2, z3);
84 let (t2, t3) = fp4_square(z4, z5);
85
86 z4 = t0 - z4;
88 z4 = z4 + z4 + t0;
89
90 z5 = t1 + z5;
91 z5 = z5 + z5 + t1;
92
93 t0 = t3.mul_by_nonresidue();
95 z2 = t0 + z2;
96 z2 = z2 + z2 + t0;
97
98 z3 = t2 - z3;
99 z3 = z3 + z3 + t2;
100
101 Fp12 {
102 c0: Fp6 {
103 c0: z0,
104 c1: z4,
105 c2: z3,
106 },
107 c1: Fp6 {
108 c0: z2,
109 c1: z1,
110 c2: z5,
111 },
112 }
113 }
114 #[must_use]
115 fn cycolotomic_exp(f: Fp12) -> Fp12 {
116 let x = BLS_X;
117 let mut tmp = Fp12::one();
118 let mut found_one = false;
119 for i in (0..64).rev().map(|b| ((x >> b) & 1) == 1) {
120 if found_one {
121 tmp = cyclotomic_square(tmp)
122 } else {
123 found_one = i;
124 }
125
126 if i {
127 tmp *= f;
128 }
129 }
130
131 tmp.conjugate()
132 }
133
134 let mut f = self.0;
135 let mut t0 = f
136 .frobenius_map()
137 .frobenius_map()
138 .frobenius_map()
139 .frobenius_map()
140 .frobenius_map()
141 .frobenius_map();
142 Gt(f.invert()
143 .map(|mut t1| {
144 let mut t2 = t0 * t1;
145 t1 = t2;
146 t2 = t2.frobenius_map().frobenius_map();
147 t2 *= t1;
148 t1 = cyclotomic_square(t2).conjugate();
149 let mut t3 = cycolotomic_exp(t2);
150 let mut t4 = cyclotomic_square(t3);
151 let mut t5 = t1 * t3;
152 t1 = cycolotomic_exp(t5);
153 t0 = cycolotomic_exp(t1);
154 let mut t6 = cycolotomic_exp(t0);
155 t6 *= t4;
156 t4 = cycolotomic_exp(t6);
157 t5 = t5.conjugate();
158 t4 *= t5 * t2;
159 t5 = t2.conjugate();
160 t1 *= t2;
161 t1 = t1.frobenius_map().frobenius_map().frobenius_map();
162 t6 *= t5;
163 t6 = t6.frobenius_map();
164 t3 *= t0;
165 t3 = t3.frobenius_map().frobenius_map();
166 t3 *= t1;
167 t3 *= t6;
168 f = t3 * t4;
169
170 f
171 })
172 .unwrap())
176 }
177}
178
179impl<'a, 'b> Add<&'b MillerLoopResult> for &'a MillerLoopResult {
180 type Output = MillerLoopResult;
181
182 #[inline]
183 fn add(self, rhs: &'b MillerLoopResult) -> MillerLoopResult {
184 MillerLoopResult(self.0 * rhs.0)
185 }
186}
187
188impl_add_binop_specify_output!(MillerLoopResult, MillerLoopResult, MillerLoopResult);
189
190impl AddAssign<MillerLoopResult> for MillerLoopResult {
191 #[inline]
192 fn add_assign(&mut self, rhs: MillerLoopResult) {
193 *self = *self + rhs;
194 }
195}
196
197impl<'b> AddAssign<&'b MillerLoopResult> for MillerLoopResult {
198 #[inline]
199 fn add_assign(&mut self, rhs: &'b MillerLoopResult) {
200 *self = *self + rhs;
201 }
202}
203
204#[cfg_attr(docsrs, doc(cfg(feature = "pairings")))]
210#[derive(Copy, Clone, Debug)]
211pub struct Gt(pub(crate) Fp12);
212
213impl Default for Gt {
214 fn default() -> Self {
215 Self::identity()
216 }
217}
218
219#[cfg(feature = "zeroize")]
220impl zeroize::DefaultIsZeroes for Gt {}
221
222impl fmt::Display for Gt {
223 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
224 write!(f, "{:?}", self)
225 }
226}
227
228impl ConstantTimeEq for Gt {
229 fn ct_eq(&self, other: &Self) -> Choice {
230 self.0.ct_eq(&other.0)
231 }
232}
233
234impl ConditionallySelectable for Gt {
235 fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
236 Gt(Fp12::conditional_select(&a.0, &b.0, choice))
237 }
238}
239
240impl Eq for Gt {}
241impl PartialEq for Gt {
242 #[inline]
243 fn eq(&self, other: &Self) -> bool {
244 bool::from(self.ct_eq(other))
245 }
246}
247
248impl Gt {
249 pub fn identity() -> Gt {
251 Gt(Fp12::one())
252 }
253
254 pub fn double(&self) -> Gt {
256 Gt(self.0.square())
257 }
258}
259
260impl<'a> Neg for &'a Gt {
261 type Output = Gt;
262
263 #[inline]
264 fn neg(self) -> Gt {
265 Gt(self.0.conjugate())
267 }
268}
269
270impl Neg for Gt {
271 type Output = Gt;
272
273 #[inline]
274 fn neg(self) -> Gt {
275 -&self
276 }
277}
278
279impl<'a, 'b> Add<&'b Gt> for &'a Gt {
280 type Output = Gt;
281
282 #[inline]
283 fn add(self, rhs: &'b Gt) -> Gt {
284 Gt(self.0 * rhs.0)
285 }
286}
287
288impl<'a, 'b> Sub<&'b Gt> for &'a Gt {
289 type Output = Gt;
290
291 #[inline]
292 fn sub(self, rhs: &'b Gt) -> Gt {
293 self + (-rhs)
294 }
295}
296
297impl<'a, 'b> Mul<&'b Scalar> for &'a Gt {
298 type Output = Gt;
299
300 fn mul(self, other: &'b Scalar) -> Self::Output {
301 let mut acc = Gt::identity();
302
303 for bit in other
310 .to_bytes()
311 .iter()
312 .rev()
313 .flat_map(|byte| (0..8).rev().map(move |i| Choice::from((byte >> i) & 1u8)))
314 .skip(1)
315 {
316 acc = acc.double();
317 acc = Gt::conditional_select(&acc, &(acc + self), bit);
318 }
319
320 acc
321 }
322}
323
324impl_binops_additive!(Gt, Gt);
325impl_binops_multiplicative!(Gt, Scalar);
326
327impl<T> Sum<T> for Gt
328where
329 T: Borrow<Gt>,
330{
331 fn sum<I>(iter: I) -> Self
332 where
333 I: Iterator<Item = T>,
334 {
335 iter.fold(Self::identity(), |acc, item| acc + item.borrow())
336 }
337}
338
339impl Group for Gt {
340 type Scalar = Scalar;
341
342 fn random(mut rng: impl RngCore) -> Self {
343 loop {
344 let inner = Fp12::random(&mut rng);
345
346 if !bool::from(inner.is_zero()) {
350 return MillerLoopResult(inner).final_exponentiation();
351 }
352 }
353 }
354
355 fn identity() -> Self {
356 Self::identity()
357 }
358
359 fn generator() -> Self {
360 Gt(Fp12 {
362 c0: Fp6 {
363 c0: Fp2 {
364 c0: Fp::from_raw_unchecked([
365 0x1972_e433_a01f_85c5,
366 0x97d3_2b76_fd77_2538,
367 0xc8ce_546f_c96b_cdf9,
368 0xcef6_3e73_66d4_0614,
369 0xa611_3427_8184_3780,
370 0x13f3_448a_3fc6_d825,
371 ]),
372 c1: Fp::from_raw_unchecked([
373 0xd263_31b0_2e9d_6995,
374 0x9d68_a482_f779_7e7d,
375 0x9c9b_2924_8d39_ea92,
376 0xf480_1ca2_e131_07aa,
377 0xa16c_0732_bdbc_b066,
378 0x083c_a4af_ba36_0478,
379 ]),
380 },
381 c1: Fp2 {
382 c0: Fp::from_raw_unchecked([
383 0x59e2_61db_0916_b641,
384 0x2716_b6f4_b23e_960d,
385 0xc8e5_5b10_a0bd_9c45,
386 0x0bdb_0bd9_9c4d_eda8,
387 0x8cf8_9ebf_57fd_aac5,
388 0x12d6_b792_9e77_7a5e,
389 ]),
390 c1: Fp::from_raw_unchecked([
391 0x5fc8_5188_b0e1_5f35,
392 0x34a0_6e3a_8f09_6365,
393 0xdb31_26a6_e02a_d62c,
394 0xfc6f_5aa9_7d9a_990b,
395 0xa12f_55f5_eb89_c210,
396 0x1723_703a_926f_8889,
397 ]),
398 },
399 c2: Fp2 {
400 c0: Fp::from_raw_unchecked([
401 0x9358_8f29_7182_8778,
402 0x43f6_5b86_11ab_7585,
403 0x3183_aaf5_ec27_9fdf,
404 0xfa73_d7e1_8ac9_9df6,
405 0x64e1_76a6_a64c_99b0,
406 0x179f_a78c_5838_8f1f,
407 ]),
408 c1: Fp::from_raw_unchecked([
409 0x672a_0a11_ca2a_ef12,
410 0x0d11_b9b5_2aa3_f16b,
411 0xa444_12d0_699d_056e,
412 0xc01d_0177_221a_5ba5,
413 0x66e0_cede_6c73_5529,
414 0x05f5_a71e_9fdd_c339,
415 ]),
416 },
417 },
418 c1: Fp6 {
419 c0: Fp2 {
420 c0: Fp::from_raw_unchecked([
421 0xd30a_88a1_b062_c679,
422 0x5ac5_6a5d_35fc_8304,
423 0xd0c8_34a6_a81f_290d,
424 0xcd54_30c2_da37_07c7,
425 0xf0c2_7ff7_8050_0af0,
426 0x0924_5da6_e2d7_2eae,
427 ]),
428 c1: Fp::from_raw_unchecked([
429 0x9f2e_0676_791b_5156,
430 0xe2d1_c823_4918_fe13,
431 0x4c9e_459f_3c56_1bf4,
432 0xa3e8_5e53_b9d3_e3c1,
433 0x820a_121e_21a7_0020,
434 0x15af_6183_41c5_9acc,
435 ]),
436 },
437 c1: Fp2 {
438 c0: Fp::from_raw_unchecked([
439 0x7c95_658c_2499_3ab1,
440 0x73eb_3872_1ca8_86b9,
441 0x5256_d749_4774_34bc,
442 0x8ba4_1902_ea50_4a8b,
443 0x04a3_d3f8_0c86_ce6d,
444 0x18a6_4a87_fb68_6eaa,
445 ]),
446 c1: Fp::from_raw_unchecked([
447 0xbb83_e71b_b920_cf26,
448 0x2a52_77ac_92a7_3945,
449 0xfc0e_e59f_94f0_46a0,
450 0x7158_cdf3_7860_58f7,
451 0x7cc1_061b_82f9_45f6,
452 0x03f8_47aa_9fdb_e567,
453 ]),
454 },
455 c2: Fp2 {
456 c0: Fp::from_raw_unchecked([
457 0x8078_dba5_6134_e657,
458 0x1cd7_ec9a_4399_8a6e,
459 0xb1aa_599a_1a99_3766,
460 0xc9a0_f62f_0842_ee44,
461 0x8e15_9be3_b605_dffa,
462 0x0c86_ba0d_4af1_3fc2,
463 ]),
464 c1: Fp::from_raw_unchecked([
465 0xe80f_f2a0_6a52_ffb1,
466 0x7694_ca48_721a_906c,
467 0x7583_183e_03b0_8514,
468 0xf567_afdd_40ce_e4e2,
469 0x9a6d_96d2_e526_a5fc,
470 0x197e_9f49_861f_2242,
471 ]),
472 },
473 },
474 })
475 }
476
477 fn is_identity(&self) -> Choice {
478 self.ct_eq(&Self::identity())
479 }
480
481 #[must_use]
482 fn double(&self) -> Self {
483 self.double()
484 }
485}
486
487#[cfg(feature = "alloc")]
488#[cfg_attr(docsrs, doc(cfg(all(feature = "pairings", feature = "alloc"))))]
489#[derive(Clone, Debug)]
490pub struct G2Prepared {
499 infinity: Choice,
500 coeffs: Vec<(Fp2, Fp2, Fp2)>,
501}
502
503#[cfg(feature = "alloc")]
504impl From<G2Affine> for G2Prepared {
505 fn from(q: G2Affine) -> G2Prepared {
506 struct Adder {
507 cur: G2Projective,
508 base: G2Affine,
509 coeffs: Vec<(Fp2, Fp2, Fp2)>,
510 }
511
512 impl MillerLoopDriver for Adder {
513 type Output = ();
514
515 fn doubling_step(&mut self, _: Self::Output) -> Self::Output {
516 let coeffs = doubling_step(&mut self.cur);
517 self.coeffs.push(coeffs);
518 }
519 fn addition_step(&mut self, _: Self::Output) -> Self::Output {
520 let coeffs = addition_step(&mut self.cur, &self.base);
521 self.coeffs.push(coeffs);
522 }
523 fn square_output(_: Self::Output) -> Self::Output {}
524 fn conjugate(_: Self::Output) -> Self::Output {}
525 fn one() -> Self::Output {}
526 }
527
528 let is_identity = q.is_identity();
529 let q = G2Affine::conditional_select(&q, &G2Affine::generator(), is_identity);
530
531 let mut adder = Adder {
532 cur: G2Projective::from(q),
533 base: q,
534 coeffs: Vec::with_capacity(68),
535 };
536
537 miller_loop(&mut adder);
538
539 assert_eq!(adder.coeffs.len(), 68);
540
541 G2Prepared {
542 infinity: is_identity,
543 coeffs: adder.coeffs,
544 }
545 }
546}
547
548#[cfg(feature = "alloc")]
549#[cfg_attr(docsrs, doc(cfg(all(feature = "pairings", feature = "alloc"))))]
550pub fn multi_miller_loop(terms: &[(&G1Affine, &G2Prepared)]) -> MillerLoopResult {
555 struct Adder<'a, 'b, 'c> {
556 terms: &'c [(&'a G1Affine, &'b G2Prepared)],
557 index: usize,
558 }
559
560 impl<'a, 'b, 'c> MillerLoopDriver for Adder<'a, 'b, 'c> {
561 type Output = Fp12;
562
563 fn doubling_step(&mut self, mut f: Self::Output) -> Self::Output {
564 let index = self.index;
565 for term in self.terms {
566 let either_identity = term.0.is_identity() | term.1.infinity;
567
568 let new_f = ell(f, &term.1.coeffs[index], term.0);
569 f = Fp12::conditional_select(&new_f, &f, either_identity);
570 }
571 self.index += 1;
572
573 f
574 }
575 fn addition_step(&mut self, mut f: Self::Output) -> Self::Output {
576 let index = self.index;
577 for term in self.terms {
578 let either_identity = term.0.is_identity() | term.1.infinity;
579
580 let new_f = ell(f, &term.1.coeffs[index], term.0);
581 f = Fp12::conditional_select(&new_f, &f, either_identity);
582 }
583 self.index += 1;
584
585 f
586 }
587 fn square_output(f: Self::Output) -> Self::Output {
588 f.square()
589 }
590 fn conjugate(f: Self::Output) -> Self::Output {
591 f.conjugate()
592 }
593 fn one() -> Self::Output {
594 Fp12::one()
595 }
596 }
597
598 let mut adder = Adder { terms, index: 0 };
599
600 let tmp = miller_loop(&mut adder);
601
602 MillerLoopResult(tmp)
603}
604
605#[cfg_attr(docsrs, doc(cfg(feature = "pairings")))]
607pub fn pairing(p: &G1Affine, q: &G2Affine) -> Gt {
608 struct Adder {
609 cur: G2Projective,
610 base: G2Affine,
611 p: G1Affine,
612 }
613
614 impl MillerLoopDriver for Adder {
615 type Output = Fp12;
616
617 fn doubling_step(&mut self, f: Self::Output) -> Self::Output {
618 let coeffs = doubling_step(&mut self.cur);
619 ell(f, &coeffs, &self.p)
620 }
621 fn addition_step(&mut self, f: Self::Output) -> Self::Output {
622 let coeffs = addition_step(&mut self.cur, &self.base);
623 ell(f, &coeffs, &self.p)
624 }
625 fn square_output(f: Self::Output) -> Self::Output {
626 f.square()
627 }
628 fn conjugate(f: Self::Output) -> Self::Output {
629 f.conjugate()
630 }
631 fn one() -> Self::Output {
632 Fp12::one()
633 }
634 }
635
636 let either_identity = p.is_identity() | q.is_identity();
637 let p = G1Affine::conditional_select(p, &G1Affine::generator(), either_identity);
638 let q = G2Affine::conditional_select(q, &G2Affine::generator(), either_identity);
639
640 let mut adder = Adder {
641 cur: G2Projective::from(q),
642 base: q,
643 p,
644 };
645
646 let tmp = miller_loop(&mut adder);
647 let tmp = MillerLoopResult(Fp12::conditional_select(
648 &tmp,
649 &Fp12::one(),
650 either_identity,
651 ));
652 tmp.final_exponentiation()
653}
654
655trait MillerLoopDriver {
656 type Output;
657
658 fn doubling_step(&mut self, f: Self::Output) -> Self::Output;
659 fn addition_step(&mut self, f: Self::Output) -> Self::Output;
660 fn square_output(f: Self::Output) -> Self::Output;
661 fn conjugate(f: Self::Output) -> Self::Output;
662 fn one() -> Self::Output;
663}
664
665fn miller_loop<D: MillerLoopDriver>(driver: &mut D) -> D::Output {
669 let mut f = D::one();
670
671 let mut found_one = false;
672 for i in (0..64).rev().map(|b| (((BLS_X >> 1) >> b) & 1) == 1) {
673 if !found_one {
674 found_one = i;
675 continue;
676 }
677
678 f = driver.doubling_step(f);
679
680 if i {
681 f = driver.addition_step(f);
682 }
683
684 f = D::square_output(f);
685 }
686
687 f = driver.doubling_step(f);
688
689 if BLS_X_IS_NEGATIVE {
690 f = D::conjugate(f);
691 }
692
693 f
694}
695
696fn ell(f: Fp12, coeffs: &(Fp2, Fp2, Fp2), p: &G1Affine) -> Fp12 {
697 let mut c0 = coeffs.0;
698 let mut c1 = coeffs.1;
699
700 c0.c0 *= p.y;
701 c0.c1 *= p.y;
702
703 c1.c0 *= p.x;
704 c1.c1 *= p.x;
705
706 f.mul_by_014(&coeffs.2, &c1, &c0)
707}
708
709fn doubling_step(r: &mut G2Projective) -> (Fp2, Fp2, Fp2) {
710 let tmp0 = r.x.square();
712 let tmp1 = r.y.square();
713 let tmp2 = tmp1.square();
714 let tmp3 = (tmp1 + r.x).square() - tmp0 - tmp2;
715 let tmp3 = tmp3 + tmp3;
716 let tmp4 = tmp0 + tmp0 + tmp0;
717 let tmp6 = r.x + tmp4;
718 let tmp5 = tmp4.square();
719 let zsquared = r.z.square();
720 r.x = tmp5 - tmp3 - tmp3;
721 r.z = (r.z + r.y).square() - tmp1 - zsquared;
722 r.y = (tmp3 - r.x) * tmp4;
723 let tmp2 = tmp2 + tmp2;
724 let tmp2 = tmp2 + tmp2;
725 let tmp2 = tmp2 + tmp2;
726 r.y -= tmp2;
727 let tmp3 = tmp4 * zsquared;
728 let tmp3 = tmp3 + tmp3;
729 let tmp3 = -tmp3;
730 let tmp6 = tmp6.square() - tmp0 - tmp5;
731 let tmp1 = tmp1 + tmp1;
732 let tmp1 = tmp1 + tmp1;
733 let tmp6 = tmp6 - tmp1;
734 let tmp0 = r.z * zsquared;
735 let tmp0 = tmp0 + tmp0;
736
737 (tmp0, tmp3, tmp6)
738}
739
740fn addition_step(r: &mut G2Projective, q: &G2Affine) -> (Fp2, Fp2, Fp2) {
741 let zsquared = r.z.square();
743 let ysquared = q.y.square();
744 let t0 = zsquared * q.x;
745 let t1 = ((q.y + r.z).square() - ysquared - zsquared) * zsquared;
746 let t2 = t0 - r.x;
747 let t3 = t2.square();
748 let t4 = t3 + t3;
749 let t4 = t4 + t4;
750 let t5 = t4 * t2;
751 let t6 = t1 - r.y - r.y;
752 let t9 = t6 * q.x;
753 let t7 = t4 * r.x;
754 r.x = t6.square() - t5 - t7 - t7;
755 r.z = (r.z + t2).square() - zsquared - t3;
756 let t10 = q.y + r.z;
757 let t8 = (t7 - r.x) * t6;
758 let t0 = r.y * t5;
759 let t0 = t0 + t0;
760 r.y = t8 - t0;
761 let t10 = t10.square() - ysquared;
762 let ztsquared = r.z.square();
763 let t10 = t10 - ztsquared;
764 let t9 = t9 + t9 - t10;
765 let t10 = r.z + r.z;
766 let t6 = -t6;
767 let t1 = t6 + t6;
768
769 (t10, t1, t9)
770}
771
772impl PairingCurveAffine for G1Affine {
773 type Pair = G2Affine;
774 type PairingResult = Gt;
775
776 fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult {
777 pairing(self, other)
778 }
779}
780
781impl PairingCurveAffine for G2Affine {
782 type Pair = G1Affine;
783 type PairingResult = Gt;
784
785 fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult {
786 pairing(other, self)
787 }
788}
789
790#[cfg_attr(docsrs, doc(cfg(feature = "pairings")))]
792#[derive(Clone, Debug)]
793pub struct Bls12;
794
795impl Engine for Bls12 {
796 type Fr = Scalar;
797 type G1 = G1Projective;
798 type G1Affine = G1Affine;
799 type G2 = G2Projective;
800 type G2Affine = G2Affine;
801 type Gt = Gt;
802
803 fn pairing(p: &Self::G1Affine, q: &Self::G2Affine) -> Self::Gt {
804 pairing(p, q)
805 }
806}
807
808impl pairing::MillerLoopResult for MillerLoopResult {
809 type Gt = Gt;
810
811 fn final_exponentiation(&self) -> Self::Gt {
812 self.final_exponentiation()
813 }
814}
815
816#[cfg(feature = "alloc")]
817impl MultiMillerLoop for Bls12 {
818 type G2Prepared = G2Prepared;
819 type Result = MillerLoopResult;
820
821 fn multi_miller_loop(terms: &[(&Self::G1Affine, &Self::G2Prepared)]) -> Self::Result {
822 multi_miller_loop(terms)
823 }
824}
825
826#[test]
827fn test_gt_generator() {
828 assert_eq!(
829 Gt::generator(),
830 pairing(&G1Affine::generator(), &G2Affine::generator())
831 );
832}
833
834#[test]
835fn test_bilinearity() {
836 use crate::Scalar;
837
838 let a = Scalar::from_raw([1, 2, 3, 4]).invert().unwrap().square();
839 let b = Scalar::from_raw([5, 6, 7, 8]).invert().unwrap().square();
840 let c = a * b;
841
842 let g = G1Affine::from(G1Affine::generator() * a);
843 let h = G2Affine::from(G2Affine::generator() * b);
844 let p = pairing(&g, &h);
845
846 assert!(p != Gt::identity());
847
848 let expected = G1Affine::from(G1Affine::generator() * c);
849
850 assert_eq!(p, pairing(&expected, &G2Affine::generator()));
851 assert_eq!(
852 p,
853 pairing(&G1Affine::generator(), &G2Affine::generator()) * c
854 );
855}
856
857#[test]
858fn test_unitary() {
859 let g = G1Affine::generator();
860 let h = G2Affine::generator();
861 let p = -pairing(&g, &h);
862 let q = pairing(&g, &-h);
863 let r = pairing(&-g, &h);
864
865 assert_eq!(p, q);
866 assert_eq!(q, r);
867}
868
869#[cfg(feature = "alloc")]
870#[test]
871fn test_multi_miller_loop() {
872 let a1 = G1Affine::generator();
873 let b1 = G2Affine::generator();
874
875 let a2 = G1Affine::from(
876 G1Affine::generator() * Scalar::from_raw([1, 2, 3, 4]).invert().unwrap().square(),
877 );
878 let b2 = G2Affine::from(
879 G2Affine::generator() * Scalar::from_raw([4, 2, 2, 4]).invert().unwrap().square(),
880 );
881
882 let a3 = G1Affine::identity();
883 let b3 = G2Affine::from(
884 G2Affine::generator() * Scalar::from_raw([9, 2, 2, 4]).invert().unwrap().square(),
885 );
886
887 let a4 = G1Affine::from(
888 G1Affine::generator() * Scalar::from_raw([5, 5, 5, 5]).invert().unwrap().square(),
889 );
890 let b4 = G2Affine::identity();
891
892 let a5 = G1Affine::from(
893 G1Affine::generator() * Scalar::from_raw([323, 32, 3, 1]).invert().unwrap().square(),
894 );
895 let b5 = G2Affine::from(
896 G2Affine::generator() * Scalar::from_raw([4, 2, 2, 9099]).invert().unwrap().square(),
897 );
898
899 let b1_prepared = G2Prepared::from(b1);
900 let b2_prepared = G2Prepared::from(b2);
901 let b3_prepared = G2Prepared::from(b3);
902 let b4_prepared = G2Prepared::from(b4);
903 let b5_prepared = G2Prepared::from(b5);
904
905 let expected = pairing(&a1, &b1)
906 + pairing(&a2, &b2)
907 + pairing(&a3, &b3)
908 + pairing(&a4, &b4)
909 + pairing(&a5, &b5);
910
911 let test = multi_miller_loop(&[
912 (&a1, &b1_prepared),
913 (&a2, &b2_prepared),
914 (&a3, &b3_prepared),
915 (&a4, &b4_prepared),
916 (&a5, &b5_prepared),
917 ])
918 .final_exponentiation();
919
920 assert_eq!(expected, test);
921}
922
923#[test]
924fn test_miller_loop_result_default() {
925 assert_eq!(
926 MillerLoopResult::default().final_exponentiation(),
927 Gt::identity(),
928 );
929}
930
931#[cfg(feature = "zeroize")]
932#[test]
933fn test_miller_loop_result_zeroize() {
934 use zeroize::Zeroize;
935
936 let mut m = multi_miller_loop(&[
937 (&G1Affine::generator(), &G2Affine::generator().into()),
938 (&-G1Affine::generator(), &G2Affine::generator().into()),
939 ]);
940 m.zeroize();
941 assert_eq!(m.0, MillerLoopResult::default().0);
942}
943
944#[test]
945fn tricking_miller_loop_result() {
946 assert_eq!(
947 multi_miller_loop(&[(&G1Affine::identity(), &G2Affine::generator().into())]).0,
948 Fp12::one()
949 );
950 assert_eq!(
951 multi_miller_loop(&[(&G1Affine::generator(), &G2Affine::identity().into())]).0,
952 Fp12::one()
953 );
954 assert_ne!(
955 multi_miller_loop(&[
956 (&G1Affine::generator(), &G2Affine::generator().into()),
957 (&-G1Affine::generator(), &G2Affine::generator().into())
958 ])
959 .0,
960 Fp12::one()
961 );
962 assert_eq!(
963 multi_miller_loop(&[
964 (&G1Affine::generator(), &G2Affine::generator().into()),
965 (&-G1Affine::generator(), &G2Affine::generator().into())
966 ])
967 .final_exponentiation(),
968 Gt::identity()
969 );
970}