p3_mds/
karatsuba_convolution.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
//! Calculate the convolution of two vectors using a Karatsuba-style
//! decomposition and the CRT.
//!
//! This is not a new idea, but we did have the pleasure of
//! reinventing it independently. Some references:
//! - https://cr.yp.to/lineartime/multapps-20080515.pdf
//! - https://2π.com/23/convolution/
//!
//! Given a vector v \in F^N, let v(x) \in F[X] denote the polynomial
//! v_0 + v_1 x + ... + v_{N - 1} x^{N - 1}.  Then w is equal to the
//! convolution v * u if and only if w(x) = v(x)u(x) mod x^N - 1.
//! Additionally, define the negacyclic convolution by w(x) = v(x)u(x)
//! mod x^N + 1.  Using the Chinese remainder theorem we can compute
//! w(x) as
//!     w(x) = 1/2 (w_0(x) + w_1(x)) + x^{N/2}/2 (w_0(x) - w_1(x))
//! where
//!     w_0 = v(x)u(x) mod x^{N/2} - 1
//!     w_1 = v(x)u(x) mod x^{N/2} + 1
//!
//! To compute w_0 and w_1 we first compute
//!                  v_0(x) = v(x) mod x^{N/2} - 1
//!                  v_1(x) = v(x) mod x^{N/2} + 1
//!                  u_0(x) = u(x) mod x^{N/2} - 1
//!                  u_1(x) = u(x) mod x^{N/2} + 1
//!
//! Now w_0 is the convolution of v_0 and u_0 which we can compute
//! recursively.  For w_1 we compute the negacyclic convolution
//! v_1(x)u_1(x) mod x^{N/2} + 1 using Karatsuba.
//!
//! There are 2 possible approaches to applying Karatsuba which mirror
//! the DIT vs DIF approaches to FFT's, the left/right decomposition
//! or the even/odd decomposition. The latter seems to have fewer
//! operations and so it is the one implemented below, though it does
//! require a bit more data manipulation. It works as follows:
//!
//! Define the even v_e and odd v_o parts so that v(x) = (v_e(x^2) + x v_o(x^2)).
//! Then v(x)u(x)
//!    = (v_e(x^2)u_e(x^2) + x^2 v_o(x^2)u_o(x^2))
//!      + x ((v_e(x^2) + v_o(x^2))(u_e(x^2) + u_o(x^2))
//!            - (v_e(x^2)u_e(x^2) + v_o(x^2)u_o(x^2)))
//! This reduces the problem to 3 negacyclic convolutions of size N/2 which
//! can be computed recursively.
//!
//! Of course, for small sizes we just explicitly write out the O(n^2)
//! approach.

use core::ops::{Add, AddAssign, Neg, ShrAssign, Sub, SubAssign};

/// This trait collects the operations needed by `Convolve` below.
///
/// TODO: Think of a better name for this.
pub trait RngElt:
    Add<Output = Self>
    + AddAssign
    + Copy
    + Default
    + Neg<Output = Self>
    + ShrAssign<u32>
    + Sub<Output = Self>
    + SubAssign
{
}

impl RngElt for i64 {}
impl RngElt for i128 {}

/// Template function to perform convolution of vectors.
///
/// Roughly speaking, for a convolution of size `N`, it should be
/// possible to add `N` elements of type `T` without overflowing, and
/// similarly for `U`. Then multiplication via `Self::mul` should
/// produce an element of type `V` which will not overflow after about
/// `N` additions (this is an over-estimate).
///
/// For example usage, see `{mersenne-31,baby-bear,goldilocks}/src/mds.rs`.
///
/// NB: In practice, one of the parameters to the convolution will be
/// constant (the MDS matrix). After inspecting Godbolt output, it
/// seems that the compiler does indeed generate single constants as
/// inputs to the multiplication, rather than doing all that
/// arithmetic on the constant values every time. Note however that,
/// for MDS matrices with large entries (N >= 24), these compile-time
/// generated constants will be about N times bigger than they need to
/// be in principle, which could be a potential avenue for some minor
/// improvements.
///
/// NB: If primitive multiplications are still the bottleneck, a
/// further possibility would be to find an MDS matrix some of whose
/// entries are powers of 2. Then the multiplication can be replaced
/// with a shift, which on most architectures has better throughput
/// and latency, and is issued on different ports (1*p06) to
/// multiplication (1*p1).
pub trait Convolve<F, T: RngElt, U: RngElt, V: RngElt> {
    /// Given an input element, retrieve the corresponding internal
    /// element that will be used in calculations.
    fn read(input: F) -> T;

    /// Given input vectors `lhs` and `rhs`, calculate their dot
    /// product. The result can be reduced with respect to the modulus
    /// (of `F`), but it must have the same lower 10 bits as the dot
    /// product if all inputs are considered integers. See
    /// `monty-31/src/mds.rs::barrett_red_monty31()` for an example
    /// of how this can be implemented in practice.
    fn parity_dot<const N: usize>(lhs: [T; N], rhs: [U; N]) -> V;

    /// Convert an internal element of type `V` back into an external
    /// element.
    fn reduce(z: V) -> F;

    /// Convolve `lhs` and `rhs`.
    ///
    /// The parameter `conv` should be the function in this trait that
    /// corresponds to length `N`.
    #[inline(always)]
    fn apply<const N: usize, C: Fn([T; N], [U; N], &mut [V])>(
        lhs: [F; N],
        rhs: [U; N],
        conv: C,
    ) -> [F; N] {
        let lhs = lhs.map(Self::read);
        let mut output = [V::default(); N];
        conv(lhs, rhs, &mut output);
        output.map(Self::reduce)
    }

    #[inline(always)]
    fn conv3(lhs: [T; 3], rhs: [U; 3], output: &mut [V]) {
        output[0] = Self::parity_dot(lhs, [rhs[0], rhs[2], rhs[1]]);
        output[1] = Self::parity_dot(lhs, [rhs[1], rhs[0], rhs[2]]);
        output[2] = Self::parity_dot(lhs, [rhs[2], rhs[1], rhs[0]]);
    }

    #[inline(always)]
    fn negacyclic_conv3(lhs: [T; 3], rhs: [U; 3], output: &mut [V]) {
        output[0] = Self::parity_dot(lhs, [rhs[0], -rhs[2], -rhs[1]]);
        output[1] = Self::parity_dot(lhs, [rhs[1], rhs[0], -rhs[2]]);
        output[2] = Self::parity_dot(lhs, [rhs[2], rhs[1], rhs[0]]);
    }

    #[inline(always)]
    fn conv4(lhs: [T; 4], rhs: [U; 4], output: &mut [V]) {
        // NB: This is just explicitly implementing
        // conv_n_recursive::<4, 2, _, _>(lhs, rhs, output, Self::conv2, Self::negacyclic_conv2)
        let u_p = [lhs[0] + lhs[2], lhs[1] + lhs[3]];
        let u_m = [lhs[0] - lhs[2], lhs[1] - lhs[3]];
        let v_p = [rhs[0] + rhs[2], rhs[1] + rhs[3]];
        let v_m = [rhs[0] - rhs[2], rhs[1] - rhs[3]];

        output[0] = Self::parity_dot(u_m, [v_m[0], -v_m[1]]);
        output[1] = Self::parity_dot(u_m, [v_m[1], v_m[0]]);
        output[2] = Self::parity_dot(u_p, v_p);
        output[3] = Self::parity_dot(u_p, [v_p[1], v_p[0]]);

        output[0] += output[2];
        output[1] += output[3];

        output[0] >>= 1;
        output[1] >>= 1;

        output[2] -= output[0];
        output[3] -= output[1];
    }

    #[inline(always)]
    fn negacyclic_conv4(lhs: [T; 4], rhs: [U; 4], output: &mut [V]) {
        output[0] = Self::parity_dot(lhs, [rhs[0], -rhs[3], -rhs[2], -rhs[1]]);
        output[1] = Self::parity_dot(lhs, [rhs[1], rhs[0], -rhs[3], -rhs[2]]);
        output[2] = Self::parity_dot(lhs, [rhs[2], rhs[1], rhs[0], -rhs[3]]);
        output[3] = Self::parity_dot(lhs, [rhs[3], rhs[2], rhs[1], rhs[0]]);
    }

    #[inline(always)]
    fn conv6(lhs: [T; 6], rhs: [U; 6], output: &mut [V]) {
        conv_n_recursive::<6, 3, T, U, V, _, _>(
            lhs,
            rhs,
            output,
            Self::conv3,
            Self::negacyclic_conv3,
        )
    }

    #[inline(always)]
    fn negacyclic_conv6(lhs: [T; 6], rhs: [U; 6], output: &mut [V]) {
        negacyclic_conv_n_recursive::<6, 3, T, U, V, _>(lhs, rhs, output, Self::negacyclic_conv3)
    }

    #[inline(always)]
    fn conv8(lhs: [T; 8], rhs: [U; 8], output: &mut [V]) {
        conv_n_recursive::<8, 4, T, U, V, _, _>(
            lhs,
            rhs,
            output,
            Self::conv4,
            Self::negacyclic_conv4,
        )
    }

    #[inline(always)]
    fn negacyclic_conv8(lhs: [T; 8], rhs: [U; 8], output: &mut [V]) {
        negacyclic_conv_n_recursive::<8, 4, T, U, V, _>(lhs, rhs, output, Self::negacyclic_conv4)
    }

    #[inline(always)]
    fn conv12(lhs: [T; 12], rhs: [U; 12], output: &mut [V]) {
        conv_n_recursive::<12, 6, T, U, V, _, _>(
            lhs,
            rhs,
            output,
            Self::conv6,
            Self::negacyclic_conv6,
        )
    }

    #[inline(always)]
    fn negacyclic_conv12(lhs: [T; 12], rhs: [U; 12], output: &mut [V]) {
        negacyclic_conv_n_recursive::<12, 6, T, U, V, _>(lhs, rhs, output, Self::negacyclic_conv6)
    }

    #[inline(always)]
    fn conv16(lhs: [T; 16], rhs: [U; 16], output: &mut [V]) {
        conv_n_recursive::<16, 8, T, U, V, _, _>(
            lhs,
            rhs,
            output,
            Self::conv8,
            Self::negacyclic_conv8,
        )
    }

    #[inline(always)]
    fn negacyclic_conv16(lhs: [T; 16], rhs: [U; 16], output: &mut [V]) {
        negacyclic_conv_n_recursive::<16, 8, T, U, V, _>(lhs, rhs, output, Self::negacyclic_conv8)
    }

    #[inline(always)]
    fn conv24(lhs: [T; 24], rhs: [U; 24], output: &mut [V]) {
        conv_n_recursive::<24, 12, T, U, V, _, _>(
            lhs,
            rhs,
            output,
            Self::conv12,
            Self::negacyclic_conv12,
        )
    }

    #[inline(always)]
    fn conv32(lhs: [T; 32], rhs: [U; 32], output: &mut [V]) {
        conv_n_recursive::<32, 16, T, U, V, _, _>(
            lhs,
            rhs,
            output,
            Self::conv16,
            Self::negacyclic_conv16,
        )
    }

    #[inline(always)]
    fn negacyclic_conv32(lhs: [T; 32], rhs: [U; 32], output: &mut [V]) {
        negacyclic_conv_n_recursive::<32, 16, T, U, V, _>(lhs, rhs, output, Self::negacyclic_conv16)
    }

    #[inline(always)]
    fn conv64(lhs: [T; 64], rhs: [U; 64], output: &mut [V]) {
        conv_n_recursive::<64, 32, T, U, V, _, _>(
            lhs,
            rhs,
            output,
            Self::conv32,
            Self::negacyclic_conv32,
        )
    }
}

/// Compute output(x) = lhs(x)rhs(x) mod x^N - 1.
/// Do this recursively using a convolution and negacyclic convolution of size HALF_N = N/2.
#[inline(always)]
fn conv_n_recursive<const N: usize, const HALF_N: usize, T, U, V, C, NC>(
    lhs: [T; N],
    rhs: [U; N],
    output: &mut [V],
    inner_conv: C,
    inner_negacyclic_conv: NC,
) where
    T: RngElt,
    U: RngElt,
    V: RngElt,
    C: Fn([T; HALF_N], [U; HALF_N], &mut [V]),
    NC: Fn([T; HALF_N], [U; HALF_N], &mut [V]),
{
    debug_assert_eq!(2 * HALF_N, N);
    // NB: The compiler is smart enough not to initialise these arrays.
    let mut lhs_pos = [T::default(); HALF_N]; // lhs_pos = lhs(x) mod x^{N/2} - 1
    let mut lhs_neg = [T::default(); HALF_N]; // lhs_neg = lhs(x) mod x^{N/2} + 1
    let mut rhs_pos = [U::default(); HALF_N]; // rhs_pos = rhs(x) mod x^{N/2} - 1
    let mut rhs_neg = [U::default(); HALF_N]; // rhs_neg = rhs(x) mod x^{N/2} + 1

    for i in 0..HALF_N {
        let s = lhs[i];
        let t = lhs[i + HALF_N];

        lhs_pos[i] = s + t;
        lhs_neg[i] = s - t;

        let s = rhs[i];
        let t = rhs[i + HALF_N];

        rhs_pos[i] = s + t;
        rhs_neg[i] = s - t;
    }

    let (left, right) = output.split_at_mut(HALF_N);

    // left = w1 = lhs(x)rhs(x) mod x^{N/2} + 1
    inner_negacyclic_conv(lhs_neg, rhs_neg, left);

    // right = w0 = lhs(x)rhs(x) mod x^{N/2} - 1
    inner_conv(lhs_pos, rhs_pos, right);

    for i in 0..HALF_N {
        left[i] += right[i]; // w_0 + w_1
        left[i] >>= 1; // (w_0 + w_1)/2
        right[i] -= left[i]; // (w_0 - w_1)/2
    }
}

/// Compute output(x) = lhs(x)rhs(x) mod x^N + 1.
/// Do this recursively using three negacyclic convolutions of size HALF_N = N/2.
#[inline(always)]
fn negacyclic_conv_n_recursive<const N: usize, const HALF_N: usize, T, U, V, NC>(
    lhs: [T; N],
    rhs: [U; N],
    output: &mut [V],
    inner_negacyclic_conv: NC,
) where
    T: RngElt,
    U: RngElt,
    V: RngElt,
    NC: Fn([T; HALF_N], [U; HALF_N], &mut [V]),
{
    debug_assert_eq!(2 * HALF_N, N);
    // NB: The compiler is smart enough not to initialise these arrays.
    let mut lhs_even = [T::default(); HALF_N];
    let mut lhs_odd = [T::default(); HALF_N];
    let mut lhs_sum = [T::default(); HALF_N];
    let mut rhs_even = [U::default(); HALF_N];
    let mut rhs_odd = [U::default(); HALF_N];
    let mut rhs_sum = [U::default(); HALF_N];

    for i in 0..HALF_N {
        let s = lhs[2 * i];
        let t = lhs[2 * i + 1];
        lhs_even[i] = s;
        lhs_odd[i] = t;
        lhs_sum[i] = s + t;

        let s = rhs[2 * i];
        let t = rhs[2 * i + 1];
        rhs_even[i] = s;
        rhs_odd[i] = t;
        rhs_sum[i] = s + t;
    }

    let mut even_s_conv = [V::default(); HALF_N];
    let (left, right) = output.split_at_mut(HALF_N);

    // Recursively compute the size N/2 negacyclic convolutions of
    // the even parts, odd parts, and sums.
    inner_negacyclic_conv(lhs_even, rhs_even, &mut even_s_conv);
    inner_negacyclic_conv(lhs_odd, rhs_odd, left);
    inner_negacyclic_conv(lhs_sum, rhs_sum, right);

    // Adjust so that the correct values are in right and
    // even_s_conv respectively:
    right[0] -= even_s_conv[0] + left[0];
    even_s_conv[0] -= left[HALF_N - 1];

    for i in 1..HALF_N {
        right[i] -= even_s_conv[i] + left[i];
        even_s_conv[i] += left[i - 1];
    }

    // Interleave even_s_conv and right in the output:
    for i in 0..HALF_N {
        output[2 * i] = even_s_conv[i];
        output[2 * i + 1] = output[i + HALF_N];
    }
}