halo2_proofs/poly/multiopen/
verifier.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
use ff::Field;
use rand_core::RngCore;

use super::super::{
    commitment::{Guard, Params, MSM},
    Error,
};
use super::{
    construct_intermediate_sets, ChallengeX1, ChallengeX2, ChallengeX3, ChallengeX4,
    CommitmentReference, Query, VerifierQuery,
};
use crate::arithmetic::{eval_polynomial, lagrange_interpolate, CurveAffine, FieldExt};
use crate::transcript::{EncodedChallenge, TranscriptRead};

/// Verify a multi-opening proof
pub fn verify_proof<
    'r,
    'params: 'r,
    I,
    C: CurveAffine,
    E: EncodedChallenge<C>,
    T: TranscriptRead<C, E>,
>(
    params: &'params Params<C>,
    transcript: &mut T,
    queries: I,
    mut msm: MSM<'params, C>,
) -> Result<Guard<'params, C, E>, Error>
where
    I: IntoIterator<Item = VerifierQuery<'r, 'params, C>> + Clone,
{
    // Sample x_1 for compressing openings at the same point sets together
    let x_1: ChallengeX1<_> = transcript.squeeze_challenge_scalar();

    // Sample a challenge x_2 for keeping the multi-point quotient
    // polynomial terms linearly independent.
    let x_2: ChallengeX2<_> = transcript.squeeze_challenge_scalar();

    let (commitment_map, point_sets) = construct_intermediate_sets(queries);

    // Compress the commitments and expected evaluations at x together.
    // using the challenge x_1
    let mut q_commitments: Vec<_> = vec![params.empty_msm(); point_sets.len()];

    // A vec of vecs of evals. The outer vec corresponds to the point set,
    // while the inner vec corresponds to the points in a particular set.
    let mut q_eval_sets = Vec::with_capacity(point_sets.len());
    for point_set in point_sets.iter() {
        q_eval_sets.push(vec![C::Scalar::zero(); point_set.len()]);
    }
    {
        let mut accumulate = |set_idx: usize, new_commitment, evals: Vec<C::Scalar>| {
            q_commitments[set_idx].scale(*x_1);
            match new_commitment {
                CommitmentReference::Commitment(c) => {
                    q_commitments[set_idx].append_term(C::Scalar::one(), *c);
                }
                CommitmentReference::MSM(msm) => {
                    q_commitments[set_idx].add_msm(msm);
                }
            }
            for (eval, set_eval) in evals.iter().zip(q_eval_sets[set_idx].iter_mut()) {
                *set_eval *= &(*x_1);
                *set_eval += eval;
            }
        };

        // Each commitment corresponds to evaluations at a set of points.
        // For each set, we collapse each commitment's evals pointwise.
        for commitment_data in commitment_map.into_iter() {
            accumulate(
                commitment_data.set_index,  // set_idx,
                commitment_data.commitment, // commitment,
                commitment_data.evals,      // evals
            );
        }
    }

    // Obtain the commitment to the multi-point quotient polynomial f(X).
    let q_prime_commitment = transcript.read_point().map_err(|_| Error::SamplingError)?;

    // Sample a challenge x_3 for checking that f(X) was committed to
    // correctly.
    let x_3: ChallengeX3<_> = transcript.squeeze_challenge_scalar();

    // u is a vector containing the evaluations of the Q polynomial
    // commitments at x_3
    let mut u = Vec::with_capacity(q_eval_sets.len());
    for _ in 0..q_eval_sets.len() {
        u.push(transcript.read_scalar().map_err(|_| Error::SamplingError)?);
    }

    // We can compute the expected msm_eval at x_3 using the u provided
    // by the prover and from x_2
    let msm_eval = point_sets
        .iter()
        .zip(q_eval_sets.iter())
        .zip(u.iter())
        .fold(
            C::Scalar::zero(),
            |msm_eval, ((points, evals), proof_eval)| {
                let r_poly = lagrange_interpolate(points, evals);
                let r_eval = eval_polynomial(&r_poly, *x_3);
                let eval = points.iter().fold(*proof_eval - &r_eval, |eval, point| {
                    eval * &(*x_3 - point).invert().unwrap()
                });
                msm_eval * &(*x_2) + &eval
            },
        );

    // Sample a challenge x_4 that we will use to collapse the openings of
    // the various remaining polynomials at x_3 together.
    let x_4: ChallengeX4<_> = transcript.squeeze_challenge_scalar();

    // Compute the final commitment that has to be opened
    msm.append_term(C::Scalar::one(), q_prime_commitment);
    let (msm, v) = q_commitments.into_iter().zip(u.iter()).fold(
        (msm, msm_eval),
        |(mut msm, msm_eval), (q_commitment, q_eval)| {
            msm.scale(*x_4);
            msm.add_msm(&q_commitment);
            (msm, msm_eval * &(*x_4) + q_eval)
        },
    );

    // Verify the opening proof
    super::commitment::verify_proof(params, msm, transcript, *x_3, v)
}

impl<'a, 'b, C: CurveAffine> Query<C::Scalar> for VerifierQuery<'a, 'b, C> {
    type Commitment = CommitmentReference<'a, 'b, C>;
    type Eval = C::Scalar;

    fn get_point(&self) -> C::Scalar {
        self.point
    }
    fn get_eval(&self) -> C::Scalar {
        self.eval
    }
    fn get_commitment(&self) -> Self::Commitment {
        self.commitment
    }
}