halo2curves_axiom/ed25519/
fq.rsuse core::convert::TryInto;
use core::fmt;
use core::ops::{Add, Mul, Neg, Sub};
use ff::{FromUniformBytes, PrimeField, WithSmallOrderMulGroup};
use rand::RngCore;
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
#[cfg(feature = "derive_serde")]
use serde::{Deserialize, Serialize};
use crate::arithmetic::{adc, mac, macx, sbb};
#[derive(Clone, Copy, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "derive_serde", derive(Serialize, Deserialize))]
pub struct Fq(pub(crate) [u64; 4]);
const MODULUS: Fq = Fq([
0xffffffffffffffed,
0xffffffffffffffff,
0xffffffffffffffff,
0x7fffffffffffffff,
]);
#[cfg(not(target_pointer_width = "64"))]
const MODULUS_LIMBS_32: [u32; 8] = [
0xffff_ffed,
0xffff_fffe,
0xffff_ffff,
0xffff_ffff,
0xffff_ffff,
0xffff_ffff,
0xffff_ffff,
0x7fff_ffff,
];
const MODULUS_STR: &str = "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed";
const MULTIPLICATIVE_GENERATOR: Fq = Fq::from_raw([0x02, 0x0, 0x0, 0x0]);
const INV: u64 = 0x86bca1af286bca1b;
const R: Fq = Fq([0x26, 0, 0, 0]);
const R2: Fq = Fq([0x5a4, 0, 0, 0]);
const R3: Fq = Fq([0xd658, 0, 0, 0]);
const TWO_INV: Fq = Fq::from_raw([
0xfffffffffffffff7,
0xffffffffffffffff,
0xffffffffffffffff,
0x3fffffffffffffff,
]);
const SQRT_MINUS_ONE: Fq = Fq::from_raw([
0xc4ee1b274a0ea0b0,
0x2f431806ad2fe478,
0x2b4d00993dfbd7a7,
0x2b8324804fc1df0b,
]);
const ZETA: Fq = Fq::from_raw([
0xaa86d89d8618e538,
0x1a1aada8413a4550,
0xd9872fccc55bd529,
0x381cba36aa6565b5,
]);
const ROOT_OF_UNITY: Fq = Fq::from_raw([
0xc4ee1b274a0ea0b0,
0x2f431806ad2fe478,
0x2b4d00993dfbd7a7,
0x2b8324804fc1df0b,
]);
const ROOT_OF_UNITY_INV: Fq = Fq::from_raw([
0x3b11e4d8b5f15f3d,
0xd0bce7f952d01b87,
0xd4b2ff66c2042858,
0x547cdb7fb03e20f4,
]);
const DELTA: Fq = Fq::from_raw([0x10, 0, 0, 0]);
use crate::{
field_arithmetic, field_common, field_specific, impl_add_binop_specify_output,
impl_binops_additive, impl_binops_additive_specify_output, impl_binops_multiplicative,
impl_binops_multiplicative_mixed, impl_from_u64, impl_sub_binop_specify_output, impl_sum_prod,
};
impl_binops_additive!(Fq, Fq);
impl_binops_multiplicative!(Fq, Fq);
field_common!(
Fq,
MODULUS,
INV,
MODULUS_STR,
TWO_INV,
ROOT_OF_UNITY_INV,
DELTA,
ZETA,
R,
R2,
R3
);
field_arithmetic!(Fq, MODULUS, INV, dense);
impl_sum_prod!(Fq);
impl_from_u64!(Fq, R2);
impl Fq {
pub const fn size() -> usize {
32
}
}
impl ff::Field for Fq {
const ZERO: Self = Self::zero();
const ONE: Self = Self::one();
fn random(mut rng: impl RngCore) -> Self {
Self::from_u512([
rng.next_u64(),
rng.next_u64(),
rng.next_u64(),
rng.next_u64(),
rng.next_u64(),
rng.next_u64(),
rng.next_u64(),
rng.next_u64(),
])
}
fn double(&self) -> Self {
self.double()
}
#[inline(always)]
fn square(&self) -> Self {
self.square()
}
fn sqrt(&self) -> CtOption<Self> {
let x1 = self.pow([
0xfffffffffffffffe,
0xffffffffffffffff,
0xffffffffffffffff,
0x0fffffffffffffff,
]);
let choice1 = x1.square().ct_eq(self);
let choice2 = x1.square().ct_eq(&-self);
let sqrt = Self::conditional_select(&x1, &(x1 * SQRT_MINUS_ONE), choice2);
CtOption::new(sqrt, choice1 | choice2)
}
fn sqrt_ratio(num: &Self, div: &Self) -> (Choice, Self) {
ff::helpers::sqrt_ratio_generic(num, div)
}
fn invert(&self) -> CtOption<Self> {
let tmp = self.pow_vartime([
0xffffffffffffffeb,
0xffffffffffffffff,
0xffffffffffffffff,
0x7fffffffffffffff,
]);
CtOption::new(tmp, !self.ct_eq(&Self::zero()))
}
fn pow_vartime<S: AsRef<[u64]>>(&self, exp: S) -> Self {
let mut res = Self::one();
let mut found_one = false;
for e in exp.as_ref().iter().rev() {
for i in (0..64).rev() {
if found_one {
res = res.square();
}
if ((*e >> i) & 1) == 1 {
found_one = true;
res *= self;
}
}
}
res
}
}
impl ff::PrimeField for Fq {
type Repr = [u8; 32];
const MODULUS: &'static str = MODULUS_STR;
const NUM_BITS: u32 = 256;
const CAPACITY: u32 = 255;
const TWO_INV: Self = TWO_INV;
const MULTIPLICATIVE_GENERATOR: Self = MULTIPLICATIVE_GENERATOR;
const S: u32 = 2;
const ROOT_OF_UNITY: Self = ROOT_OF_UNITY;
const ROOT_OF_UNITY_INV: Self = ROOT_OF_UNITY_INV;
const DELTA: Self = DELTA;
fn from_repr(repr: Self::Repr) -> CtOption<Self> {
let mut tmp = Fq([0, 0, 0, 0]);
tmp.0[0] = u64::from_le_bytes(repr[0..8].try_into().unwrap());
tmp.0[1] = u64::from_le_bytes(repr[8..16].try_into().unwrap());
tmp.0[2] = u64::from_le_bytes(repr[16..24].try_into().unwrap());
tmp.0[3] = u64::from_le_bytes(repr[24..32].try_into().unwrap());
let (_, borrow) = sbb(tmp.0[0], MODULUS.0[0], 0);
let (_, borrow) = sbb(tmp.0[1], MODULUS.0[1], borrow);
let (_, borrow) = sbb(tmp.0[2], MODULUS.0[2], borrow);
let (_, borrow) = sbb(tmp.0[3], MODULUS.0[3], borrow);
let is_some = (borrow as u8) & 1;
tmp *= &R2;
CtOption::new(tmp, Choice::from(is_some))
}
fn to_repr(&self) -> Self::Repr {
let tmp = Fq::montgomery_reduce_short(&self.0);
let mut res = [0; 32];
res[0..8].copy_from_slice(&tmp.0[0].to_le_bytes());
res[8..16].copy_from_slice(&tmp.0[1].to_le_bytes());
res[16..24].copy_from_slice(&tmp.0[2].to_le_bytes());
res[24..32].copy_from_slice(&tmp.0[3].to_le_bytes());
res
}
fn is_odd(&self) -> Choice {
Choice::from(self.to_repr()[0] & 1)
}
}
impl FromUniformBytes<64> for Fq {
fn from_uniform_bytes(bytes: &[u8; 64]) -> Self {
Self::from_u512([
u64::from_le_bytes(bytes[0..8].try_into().unwrap()),
u64::from_le_bytes(bytes[8..16].try_into().unwrap()),
u64::from_le_bytes(bytes[16..24].try_into().unwrap()),
u64::from_le_bytes(bytes[24..32].try_into().unwrap()),
u64::from_le_bytes(bytes[32..40].try_into().unwrap()),
u64::from_le_bytes(bytes[40..48].try_into().unwrap()),
u64::from_le_bytes(bytes[48..56].try_into().unwrap()),
u64::from_le_bytes(bytes[56..64].try_into().unwrap()),
])
}
}
impl WithSmallOrderMulGroup<3> for Fq {
const ZETA: Self = ZETA;
}
#[cfg(test)]
mod test {
use super::*;
use ff::Field;
use rand_core::OsRng;
#[test]
fn test_sqrt() {
let v = (Fq::TWO_INV).square().sqrt().unwrap();
assert!(v == Fq::TWO_INV || (-v) == Fq::TWO_INV);
for _ in 0..10000 {
let a = Fq::random(OsRng);
let mut b = a;
b = b.square();
let b = b.sqrt().unwrap();
let mut negb = b;
negb = negb.neg();
assert!(a == b || a == negb);
}
}
#[test]
fn test_invert() {
let v = Fq::one().double().invert().unwrap();
assert!(v == Fq::TWO_INV);
for _ in 0..10000 {
let a = Fq::random(OsRng);
let b = a.invert().unwrap().invert().unwrap();
assert!(a == b);
}
}
#[test]
fn test_field() {
crate::tests::field::random_field_tests::<Fq>("ed25519 base".to_string());
}
#[test]
fn test_serialization() {
crate::tests::field::random_serialization_test::<Fq>("ed25519 base".to_string());
}
}