bitvec/vec.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
#![doc = include_str!("../doc/vec.md")]
#![cfg(feature = "alloc")]
#[cfg(not(feature = "std"))]
use alloc::vec;
use alloc::vec::Vec;
use core::{
mem::{
self,
ManuallyDrop,
},
ptr,
slice,
};
use tap::Pipe;
use wyz::comu::{
Const,
Mut,
};
pub use self::iter::{
Drain,
Splice,
};
pub use crate::boxed::IntoIter;
use crate::{
boxed::BitBox,
index::BitIdx,
mem::bits_of,
order::{
BitOrder,
Lsb0,
},
ptr::{
AddressExt,
BitPtr,
BitSpan,
BitSpanError,
},
slice::BitSlice,
store::BitStore,
view::BitView,
};
mod api;
mod iter;
mod ops;
mod tests;
mod traits;
#[repr(C)]
#[doc = include_str!("../doc/vec/BitVec.md")]
pub struct BitVec<T = usize, O = Lsb0>
where
T: BitStore,
O: BitOrder,
{
/// Span description of the live bits in the allocation.
bitspan: BitSpan<Mut, T, O>,
/// Allocation capacity, measured in `T` elements.
capacity: usize,
}
/// Constructors.
impl<T, O> BitVec<T, O>
where
T: BitStore,
O: BitOrder,
{
/// An empty bit-vector with no backing allocation.
pub const EMPTY: Self = Self {
bitspan: BitSpan::EMPTY,
capacity: 0,
};
/// Creates a new bit-vector by repeating a bit for the desired length.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let zeros = BitVec::<u8, Msb0>::repeat(false, 50);
/// let ones = BitVec::<u16, Lsb0>::repeat(true, 50);
/// ```
#[inline]
pub fn repeat(bit: bool, len: usize) -> Self {
let mut out = Self::with_capacity(len);
unsafe {
out.set_len(len);
out.as_raw_mut_slice().fill_with(|| {
BitStore::new(if bit { !<T::Mem>::ZERO } else { <T::Mem>::ZERO })
});
}
out
}
/// Copies the contents of a bit-slice into a new heap allocation.
///
/// This copies the raw underlying elements into a new allocation, and sets
/// the produced bit-vector to use the same memory layout as the originating
/// bit-slice. This means that it may begin at any bit in the first element,
/// not just the zeroth bit. If you require this property, call
/// [`.force_align()`].
///
/// Dead bits in the copied memory elements are guaranteed to be zeroed.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bits = bits![0, 1, 0, 0, 1];
/// let bv = BitVec::from_bitslice(bits);
/// assert_eq!(bv, bits);
/// ```
///
/// [`.force_align()`]: Self::force_align
#[inline]
pub fn from_bitslice(slice: &BitSlice<T, O>) -> Self {
let bitspan = slice.as_bitspan();
let mut vec = bitspan
.elements()
.pipe(Vec::with_capacity)
.pipe(ManuallyDrop::new);
vec.extend(slice.domain());
let bitspan = unsafe {
BitSpan::new_unchecked(
vec.as_mut_ptr().cast::<T>().into_address(),
bitspan.head(),
bitspan.len(),
)
};
let capacity = vec.capacity();
Self { bitspan, capacity }
}
/// Constructs a new bit-vector from a single element.
///
/// This copies `elem` into a new heap allocation, and sets the bit-vector
/// to cover it entirely.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bv = BitVec::<_, Msb0>::from_element(1u8);
/// assert!(bv[7]);
/// ```
#[inline]
pub fn from_element(elem: T) -> Self {
Self::from_vec(vec![elem])
}
/// Constructs a new bit-vector from a slice of memory elements.
///
/// This copies `slice` into a new heap allocation, and sets the bit-vector
/// to cover it entirely.
///
/// ## Panics
///
/// This panics if `slice` exceeds bit-vector capacity.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let slice = &[0u8, 1, 2, 3];
/// let bv = BitVec::<_, Lsb0>::from_slice(slice);
/// assert_eq!(bv.len(), 32);
/// ```
#[inline]
pub fn from_slice(slice: &[T]) -> Self {
Self::try_from_slice(slice).unwrap()
}
/// Fallibly constructs a new bit-vector from a slice of memory elements.
///
/// This fails early if `slice` exceeds bit-vector capacity. If it is not,
/// then `slice` is copied into a new heap allocation and fully spanned by
/// the returned bit-vector.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let slice = &[0u8, 1, 2, 3];
/// let bv = BitVec::<_, Lsb0>::try_from_slice(slice).unwrap();
/// assert_eq!(bv.len(), 32);
/// ```
#[inline]
pub fn try_from_slice(slice: &[T]) -> Result<Self, BitSpanError<T>> {
BitSlice::<T, O>::try_from_slice(slice).map(Self::from_bitslice)
}
/// Converts a regular vector in-place into a bit-vector.
///
/// The produced bit-vector spans every bit in the original vector. No
/// reällocation occurs; this is purely a transform of the handle.
///
/// ## Panics
///
/// This panics if the source vector is too long to view as a bit-slice.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let v = vec![0u8, 1, 2, 3];
/// let bv = BitVec::<_, Msb0>::from_vec(v);
/// assert_eq!(bv.len(), 32);
/// ```
#[inline]
pub fn from_vec(vec: Vec<T>) -> Self {
Self::try_from_vec(vec)
.expect("vector was too long to be converted into a `BitVec`")
}
/// Attempts to convert a regular vector in-place into a bit-vector.
///
/// This fails if the source vector is too long to view as a bit-slice. On
/// success, the produced bit-vector spans every bit in the original vector.
/// No reällocation occurs; this is purely a transform of the handle.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let v = vec![0u8; 20];
/// assert_eq!(BitVec::<_, Msb0>::try_from_vec(v).unwrap().len(), 160);
/// ```
///
/// It is not practical to allocate a vector that will fail this conversion.
#[inline]
pub fn try_from_vec(vec: Vec<T>) -> Result<Self, Vec<T>> {
let mut vec = ManuallyDrop::new(vec);
let capacity = vec.capacity();
BitPtr::from_mut_slice(vec.as_mut_slice())
.span(vec.len() * bits_of::<T::Mem>())
.map(|bitspan| Self { bitspan, capacity })
.map_err(|_| ManuallyDrop::into_inner(vec))
}
/// Appends the contents of a bit-slice to a bit-vector.
///
/// This can extend from a bit-slice of any type parameters; it is not
/// restricted to using the same parameters as `self`. However, when the
/// type parameters *do* match, it is possible for this to use a batch-copy
/// optimization to go faster than the individual-bit crawl that is
/// necessary when they differ.
///
/// Until Rust provides extensive support for specialization in trait
/// implementations, you should use this method whenever you are extending
/// from a `BitSlice` proper, and only use the general [`.extend()`]
/// implementation if you are required to use a generic `bool` source.
///
/// ## Original
///
/// [`Vec::extend_from_slice`](alloc::vec::Vec::extend_from_slice)
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut bv = bitvec![0, 1];
/// bv.extend_from_bitslice(bits![0, 1, 0, 0, 1]);
/// assert_eq!(bv, bits![0, 1, 0, 1, 0, 0, 1]);
/// ```
///
/// [`.extend()`]: https://docs.rs/bitvec/latest/bitvec/vec/struct.Vec.html#impl-Extend
#[inline]
pub fn extend_from_bitslice<T2, O2>(&mut self, other: &BitSlice<T2, O2>)
where
T2: BitStore,
O2: BitOrder,
{
let len = self.len();
let olen = other.len();
self.resize(len + olen, false);
unsafe { self.get_unchecked_mut(len ..) }.clone_from_bitslice(other);
}
/// Appends a slice of `T` elements to a bit-vector.
///
/// The slice is viewed as a `BitSlice<T, O>`, then appended directly to the
/// bit-vector.
///
/// ## Original
///
/// [`Vec::extend_from_slice`](alloc::vec::Vec::extend_from_slice)
#[inline]
pub fn extend_from_raw_slice(&mut self, slice: &[T]) {
self.extend_from_bitslice(slice.view_bits::<O>());
}
}
/// Converters.
impl<T, O> BitVec<T, O>
where
T: BitStore,
O: BitOrder,
{
/// Explicitly views the bit-vector as a bit-slice.
#[inline]
pub fn as_bitslice(&self) -> &BitSlice<T, O> {
unsafe { self.bitspan.into_bitslice_ref() }
}
/// Explicitly views the bit-vector as a mutable bit-slice.
#[inline]
pub fn as_mut_bitslice(&mut self) -> &mut BitSlice<T, O> {
unsafe { self.bitspan.into_bitslice_mut() }
}
/// Views the bit-vector as a slice of its underlying memory elements.
#[inline]
pub fn as_raw_slice(&self) -> &[T] {
let (data, len) =
(self.bitspan.address().to_const(), self.bitspan.elements());
unsafe { slice::from_raw_parts(data, len) }
}
/// Views the bit-vector as a mutable slice of its underlying memory
/// elements.
#[inline]
pub fn as_raw_mut_slice(&mut self) -> &mut [T] {
let (data, len) =
(self.bitspan.address().to_mut(), self.bitspan.elements());
unsafe { slice::from_raw_parts_mut(data, len) }
}
/// Creates an unsafe shared bit-pointer to the start of the buffer.
///
/// ## Original
///
/// [`Vec::as_ptr`](alloc::vec::Vec::as_ptr)
///
/// ## Safety
///
/// You must initialize the contents of the underlying buffer before
/// accessing memory through this pointer. See the `BitPtr` documentation
/// for more details.
#[inline]
pub fn as_bitptr(&self) -> BitPtr<Const, T, O> {
self.bitspan.to_bitptr().to_const()
}
/// Creates an unsafe writable bit-pointer to the start of the buffer.
///
/// ## Original
///
/// [`Vec::as_mut_ptr`](alloc::vec::Vec::as_mut_ptr)
///
/// ## Safety
///
/// You must initialize the contents of the underlying buffer before
/// accessing memory through this pointer. See the `BitPtr` documentation
/// for more details.
#[inline]
pub fn as_mut_bitptr(&mut self) -> BitPtr<Mut, T, O> {
self.bitspan.to_bitptr()
}
/// Converts a bit-vector into a boxed bit-slice.
///
/// This may cause a reällocation to drop any excess capacity.
///
/// ## Original
///
/// [`Vec::into_boxed_slice`](alloc::vec::Vec::into_boxed_slice)
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bv = bitvec![0, 1, 0, 0, 1];
/// let bb = bv.into_boxed_bitslice();
/// ```
#[inline]
pub fn into_boxed_bitslice(self) -> BitBox<T, O> {
let mut bitspan = self.bitspan;
let mut boxed =
self.into_vec().into_boxed_slice().pipe(ManuallyDrop::new);
unsafe {
bitspan.set_address(boxed.as_mut_ptr().into_address());
BitBox::from_raw(bitspan.into_bitslice_ptr_mut())
}
}
/// Converts a bit-vector into a `Vec` of its underlying storage.
///
/// The produced vector contains all elements that contained live bits. Dead
/// bits have an unspecified value; you should call [`.set_uninitialized()`]
/// before converting into a vector.
///
/// This does not affect the allocated memory; it is purely a conversion of
/// the handle.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bv = bitvec![u8, Msb0; 0, 1, 0, 0, 1];
/// let v = bv.into_vec();
/// assert_eq!(v[0] & 0xF8, 0b01001_000);
/// ```
///
/// [`.set_uninitialized()`]: Self::set_uninitialized
#[inline]
pub fn into_vec(self) -> Vec<T> {
let (bitspan, capacity) = (self.bitspan, self.capacity);
mem::forget(self);
unsafe {
Vec::from_raw_parts(
bitspan.address().to_mut(),
bitspan.elements(),
capacity,
)
}
}
}
/// Utilities.
impl<T, O> BitVec<T, O>
where
T: BitStore,
O: BitOrder,
{
/// Overwrites each element (visible in [`.as_raw_mut_slice()`]) with a new
/// bit-pattern.
///
/// This unconditionally writes `element` into each element in the backing
/// slice, without altering the bit-vector’s length or capacity.
///
/// This guarantees that dead bits visible in [`.as_raw_slice()`] but not
/// [`.as_bitslice()`] are initialized according to the bit-pattern of
/// `element.` The elements not visible in the raw slice, but present in the
/// allocation, do *not* specify a value. You may not rely on them being
/// zeroed *or* being set to the `element` bit-pattern.
///
/// ## Parameters
///
/// - `&mut self`
/// - `element`: The bit-pattern with which each live element in the backing
/// store is initialized.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut bv = bitvec![u8, Msb0; 0; 20];
/// assert_eq!(bv.as_raw_slice(), [0; 3]);
/// bv.set_elements(0xA5);
/// assert_eq!(bv.as_raw_slice(), [0xA5; 3]);
/// ```
///
/// [`.as_bitslice()`]: Self::as_bitslice
/// [`.as_raw_mut_slice()`]: Self::as_raw_mut_slice
/// [`.as_raw_slice()`]: Self::as_raw_slice
#[inline]
pub fn set_elements(&mut self, element: T::Mem) {
self.as_raw_mut_slice()
.iter_mut()
.for_each(|elt| elt.store_value(element));
}
/// Sets the uninitialized bits of a bit-vector to a known value.
///
/// This method modifies all bits that are observable in [`.as_raw_slice()`]
/// but *not* observable in [`.as_bitslice()`] to a known value.
/// Memory beyond the raw-slice view, but still within the allocation, is
/// considered fully dead and will never be seen.
///
/// This can be used to zero the unused memory so that when viewed as a raw
/// slice, unused bits have a consistent and predictable value.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut bv = 0b1101_1100u8.view_bits::<Lsb0>().to_bitvec();
/// assert_eq!(bv.as_raw_slice()[0], 0b1101_1100u8);
///
/// bv.truncate(4);
/// assert_eq!(bv.count_ones(), 2);
/// assert_eq!(bv.as_raw_slice()[0], 0b1101_1100u8);
///
/// bv.set_uninitialized(false);
/// assert_eq!(bv.as_raw_slice()[0], 0b0000_1100u8);
///
/// bv.set_uninitialized(true);
/// assert_eq!(bv.as_raw_slice()[0], 0b1111_1100u8);
/// ```
///
/// [`.as_bitslice()`]: Self::as_bitslice
/// [`.as_raw_slice()`]: Self::as_raw_slice
#[inline]
pub fn set_uninitialized(&mut self, value: bool) {
let head = self.bitspan.head().into_inner() as usize;
let last = head + self.len();
let all = self.as_raw_mut_slice().view_bits_mut::<O>();
unsafe {
all.get_unchecked_mut(.. head).fill(value);
all.get_unchecked_mut(last ..).fill(value);
}
}
/// Ensures that the live region of the bit-vector’s contents begin at the
/// front edge of the buffer.
///
/// `BitVec` has performance optimizations where it moves its view of its
/// buffer contents in order to avoid needless moves of its data within the
/// buffer. This can lead to unexpected contents of the raw memory values,
/// so this method ensures that the semantic contents of the bit-vector
/// match its in-memory storage.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let data = 0b00_1111_00u8;
/// let bits = data.view_bits::<Msb0>();
///
/// let mut bv = bits[2 .. 6].to_bitvec();
/// assert_eq!(bv, bits![1; 4]);
/// assert_eq!(bv.as_raw_slice()[0], data);
///
/// bv.force_align();
/// assert_eq!(bv, bits![1; 4]);
/// // BitVec does not specify the value of dead bits in its buffer.
/// assert_eq!(bv.as_raw_slice()[0] & 0xF0, 0xF0);
/// ```
#[inline]
pub fn force_align(&mut self) {
let mut bitspan = self.bitspan;
let len = bitspan.len();
let head = self.bitspan.head();
if head == BitIdx::MIN {
return;
}
let head = head.into_inner() as usize;
let last = head + len;
unsafe {
bitspan.set_head(BitIdx::MIN);
bitspan.set_len(last);
bitspan
.into_bitslice_mut()
.copy_within_unchecked(head .., 0);
bitspan.set_len(len);
}
self.bitspan = bitspan;
}
/// Sets the starting-bit index of the span descriptor.
///
/// ## Safety
///
/// The new `head` value must not cause the final bits of the bit-vector to
/// depart allocated memory.
pub(crate) unsafe fn set_head(&mut self, new_head: BitIdx<T::Mem>) {
self.bitspan.set_head(new_head);
}
/// Sets a bit-vector’s length without checking that it fits in the
/// allocated capacity.
///
/// ## Safety
///
/// `new_len` must not exceed `self.capacity()`.
pub(crate) unsafe fn set_len_unchecked(&mut self, new_len: usize) {
self.bitspan.set_len(new_len);
}
/// Asserts that a length can be encoded into the bit-vector handle.
///
/// ## Panics
///
/// This panics if `len` is too large to encode into a `BitSpan`.
#[inline]
fn assert_len_encodable(len: usize) {
assert!(
BitSpan::<Const, T, O>::len_encodable(len),
"bit-vector capacity exceeded: {} > {}",
len,
BitSlice::<T, O>::MAX_BITS,
);
}
/// Reserves some memory through the underlying vector.
///
/// ## Parameters
///
/// - `&mut self`
/// - `additional`: The amount of additional space required after
/// `self.len()` in the allocation.
/// - `func`: A function that manipulates the memory reservation of the
/// underlying vector.
///
/// ## Behavior
///
/// `func` should perform the appropriate action to allocate space for at
/// least `additional` more bits. After it returns, the underlying vector is
/// extended with zero-initialized elements until `self.len() + additional`
/// bits have been given initialized memory.
#[inline]
fn do_reservation(
&mut self,
additional: usize,
func: impl FnOnce(&mut Vec<T>, usize),
) {
let len = self.len();
let new_len = len.saturating_add(additional);
Self::assert_len_encodable(new_len);
let (head, elts) = (self.bitspan.head(), self.bitspan.elements());
let new_elts =
crate::mem::elts::<T>(head.into_inner() as usize + new_len);
let extra_elts = new_elts - elts;
self.with_vec(|vec| {
func(&mut **vec, extra_elts);
// Ensure that any new elements are initialized.
vec.resize_with(new_elts, || <T as BitStore>::ZERO);
});
}
/// Briefly constructs an ordinary `Vec` controlling the buffer, allowing
/// operations to be applied to the memory allocation.
///
/// ## Parameters
///
/// - `&mut self`
/// - `func`: A function which may interact with the memory allocation.
///
/// After `func` runs, `self` is updated with the temporary `Vec`’s address
/// and capacity.
#[inline]
fn with_vec<F, R>(&mut self, func: F) -> R
where F: FnOnce(&mut ManuallyDrop<Vec<T>>) -> R {
let mut vec = unsafe { ptr::read(self) }
.into_vec()
.pipe(ManuallyDrop::new);
let out = func(&mut vec);
unsafe {
self.bitspan.set_address(vec.as_mut_ptr().into_address());
}
self.capacity = vec.capacity();
out
}
}