p3_air/
utils.rs

1//! A collection of utility functions helpful in defining AIR's.
2
3use core::array;
4
5use p3_field::{Field, FieldAlgebra};
6
7use crate::AirBuilder;
8
9/// Pack a collection of bits into a number.
10///
11/// Given vec = [v0, v1, ..., v_n] returns v0 + 2v_1 + ... + 2^n v_n
12#[inline]
13pub fn pack_bits_le<FA, Var, I>(iter: I) -> FA
14where
15    FA: FieldAlgebra,
16    Var: Into<FA> + Clone,
17    I: DoubleEndedIterator<Item = Var>,
18{
19    let mut output = FA::ZERO;
20    for elem in iter.rev() {
21        output = output.double();
22        output += elem.clone().into();
23    }
24    output
25}
26
27/// Computes the arithmetic generalization of boolean `xor`.
28///
29/// For boolean inputs, `x ^ y = x + y - 2 xy`.
30#[inline(always)]
31pub fn xor<FA: FieldAlgebra>(x: FA, y: FA) -> FA {
32    x.clone() + y.clone() - x * y.double()
33}
34
35/// Computes the arithmetic generalization of a triple `xor`.
36///
37/// For boolean inputs `x ^ y ^ z = x + y + z - 2(xy + xz + yz) + 4xyz`.
38#[inline(always)]
39pub fn xor3<FA: FieldAlgebra>(x: FA, y: FA, z: FA) -> FA {
40    // The cheapest way to implement this polynomial is to simply apply xor twice.
41    // This costs 2 adds, 2 subs, 2 muls and 2 doubles.
42    xor(x, xor(y, z))
43}
44
45/// Computes the arithmetic generalization of `andnot`.
46///
47/// For boolean inputs `(!x) & y = (1 - x)y`
48#[inline(always)]
49pub fn andn<FA: FieldAlgebra>(x: FA, y: FA) -> FA {
50    (FA::ONE - x) * y
51}
52
53/// Compute `xor` on a list of boolean field elements.
54///
55/// Verifies at debug time that all inputs are boolean.
56#[inline(always)]
57pub fn checked_xor<F: Field, const N: usize>(xs: [F; N]) -> F {
58    xs.into_iter().fold(F::ZERO, |acc, x| {
59        debug_assert!(x.is_zero() || x.is_one());
60        xor(acc, x)
61    })
62}
63
64/// Compute `andnot` on a pair of boolean field elements.
65///
66/// Verifies at debug time that both inputs are boolean.
67#[inline(always)]
68pub fn checked_andn<F: Field>(x: F, y: F) -> F {
69    debug_assert!(x.is_zero() || x.is_one());
70    debug_assert!(y.is_zero() || y.is_one());
71    andn(x, y)
72}
73
74/// Convert a 32-bit integer into an array of 32 0 or 1 field elements.
75///
76/// The output array is in little-endian order.
77#[inline]
78pub fn u32_to_bits_le<FA: FieldAlgebra>(val: u32) -> [FA; 32] {
79    array::from_fn(|i| FA::from_bool(val & (1 << i) != 0))
80}
81
82/// Convert a 64-bit integer into an array of 64 0 or 1 field elements.
83///
84/// The output array is in little-endian order.
85#[inline]
86pub fn u64_to_bits_le<FA: FieldAlgebra>(val: u64) -> [FA; 64] {
87    array::from_fn(|i| FA::from_bool(val & (1 << i) != 0))
88}
89
90/// Convert a 64-bit integer into an array of four field elements representing the 16 bit limb decomposition.
91///
92/// The output array is in little-endian order.
93#[inline]
94pub fn u64_to_16_bit_limbs<FA: FieldAlgebra>(val: u64) -> [FA; 4] {
95    array::from_fn(|i| FA::from_canonical_u16((val >> (16 * i)) as u16))
96}
97
98/// Verify that `a = b + c + d mod 2^32`
99///
100/// We assume that a, b, c, d are all given as `2, 16` bit limbs (e.g. `a = a[0] + 2^16 a[1]`) and
101/// each `16` bit limb has been range checked to ensure it contains a value in `[0, 2^16)`.
102///
103/// This function assumes we are working over a field with characteristic `P > 3*2^16`.
104#[inline]
105pub fn add3<AB: AirBuilder>(
106    builder: &mut AB,
107    a: &[<AB as AirBuilder>::Var; 2],
108    b: &[<AB as AirBuilder>::Var; 2],
109    c: &[<AB as AirBuilder>::Expr; 2],
110    d: &[<AB as AirBuilder>::Expr; 2],
111) {
112    // Define:
113    //  acc    = a - b - c - d (mod P)
114    //  acc_16 = a[0] - b[0] - c[0] - d[0] (mod P)
115    //
116    // We perform 2 checks:
117    //
118    // (1) acc*(acc + 2^32)*(acc + 2*2^32) = 0.
119    // (2) acc_16*(acc_16 + 2^16)*(acc_16 + 2*2^16) = 0.
120    //
121    // We give a short proof for why this lets us conclude that a = b + c + d mod 2^32:
122    //
123    // As all 16 bit limbs have been range checked, we know that a, b, c, d lie in [0, 2^32) and hence
124    // a = b + c + d mod 2^32 if and only if, over the integers, a - b - c - d = 0, -2^32 or -2*2^32.
125    //
126    // Equation (1) verifies that a - b - c - d mod P = 0, -2^32 or -2*2^32.
127    //
128    // Field overflow cannot occur when computing acc_16 as our characteristic is larger than 3*2^16.
129    // Hence, equation (2) verifies that, over the integers, a[0] - b[0] - c[0] - d[0] = 0, -2^16 or -2*2^16.
130    // Either way we can immediately conclude that a - b - c - d = 0 mod 2^16.
131    //
132    // Now we can use the chinese remainder theorem to combine these results to conclude that
133    // a - b - c - d mod 2^16P = 0, -2^32 or -2*2^32.
134    //
135    // No overflow can occur mod 2^16 P as 2^16 P > 3*2^32 and a, b, c, d < 2^32. Hence we conclude that
136    // over the integers a - b - c - d = 0, -2^32 or -2*2^32 which implies a = b + c + d mod 2^32.
137
138    // By assumption P > 3*2^16 so we can safely use from_canonical here.
139    let two_16 = <AB as AirBuilder>::Expr::from_canonical_u32(1 << 16);
140    let two_32 = two_16.square();
141
142    let acc_16 = a[0] - b[0] - c[0].clone() - d[0].clone();
143    let acc_32 = a[1] - b[1] - c[1].clone() - d[1].clone();
144    let acc = acc_16.clone() + two_16.clone() * acc_32;
145
146    builder.assert_zero(acc.clone() * (acc.clone() + two_32.clone()) * (acc + two_32.double()));
147    builder.assert_zero(
148        acc_16.clone() * (acc_16.clone() + two_16.clone()) * (acc_16 + two_16.double()),
149    );
150}
151
152/// Verify that `a = b + c mod 2^32`
153///
154/// We assume that a, b, c are all given as `2, 16` bit limbs (e.g. `a = a[0] + 2^16 a[1]`) and
155/// each `16` bit limb has been range checked to ensure it contains a value in `[0, 2^16)`.
156///
157/// This function assumes we are working over a field with characteristic `P > 2^17`.
158#[inline]
159pub fn add2<AB: AirBuilder>(
160    builder: &mut AB,
161    a: &[<AB as AirBuilder>::Var; 2],
162    b: &[<AB as AirBuilder>::Var; 2],
163    c: &[<AB as AirBuilder>::Expr; 2],
164) {
165    // Define:
166    //  acc    = a - b - c (mod P)
167    //  acc_16 = a[0] - b[0] - c[0] (mod P)
168    //
169    // We perform 2 checks:
170    //
171    // (1) acc*(acc + 2^32) = 0.
172    // (2) acc_16*(acc_16 + 2^16) = 0.
173    //
174    // We give a short proof for why this lets us conclude that a = b + c mod 2^32:
175    //
176    // As all 16 bit limbs have been range checked, we know that a, b, c lie in [0, 2^32) and hence
177    // a = b + c mod 2^32 if and only if, over the integers, a - b - c = 0 or -2^32.
178    //
179    // Equation (1) verifies that either a - b - c = 0 mod P or a - b - c = -2^32 mod P.
180    //
181    // Field overflow cannot occur when computing acc_16 as our characteristic is larger than 2^17.
182    // Hence, equation (2) verifies that, over the integers, a[0] - b[0] - c[0] = 0 or -2^16.
183    // Either way we can immediately conclude that a - b - c = 0 mod 2^16.
184    //
185    // Now we can use the chinese remainder theorem to combine these results to conclude that
186    // either a - b - c = 0 mod 2^16 P or a - b - c = -2^32 mod 2^16 P.
187    //
188    // No overflow can occur mod 2^16 P as 2^16 P > 2^33 and a, b, c < 2^32. Hence we conclude that
189    // over the integers a - b - c = 0 or a - b - c = -2^32 which is equivalent to a = b + c mod 2^32.
190
191    // By assumption P > 2^17 so we can safely use from_canonical here.
192    let two_16 = <AB as AirBuilder>::Expr::from_canonical_u32(1 << 16);
193    let two_32 = two_16.square();
194
195    let acc_16 = a[0] - b[0] - c[0].clone();
196    let acc_32 = a[1] - b[1] - c[1].clone();
197    let acc = acc_16.clone() + two_16.clone() * acc_32;
198
199    builder.assert_zero(acc.clone() * (acc + two_32));
200    builder.assert_zero(acc_16.clone() * (acc_16 + two_16));
201}
202
203/// Verify that `a = (b ^ (c << shift))`
204///
205/// We assume that a is given as `2 16` bit limbs and both b and c are unpacked into 32 individual bits.
206/// We assume that the bits of b have been range checked but not the inputs in c or a. Both of these are
207/// range checked as part of this function.
208#[inline]
209pub fn xor_32_shift<AB: AirBuilder>(
210    builder: &mut AB,
211    a: &[<AB as AirBuilder>::Var; 2],
212    b: &[<AB as AirBuilder>::Var; 32],
213    c: &[<AB as AirBuilder>::Var; 32],
214    shift: usize,
215) {
216    // First we range check all elements of c.
217    c.iter().for_each(|&elem| builder.assert_bool(elem));
218
219    // Next we compute (b ^ (c << shift)) and pack the result into two 16-bit integers.
220    let xor_shift_c_0_16 = b[..16]
221        .iter()
222        .enumerate()
223        .map(|(i, elem)| xor((*elem).into(), c[(32 + i - shift) % 32].into()));
224    let sum_0_16: <AB as AirBuilder>::Expr = pack_bits_le(xor_shift_c_0_16);
225
226    let xor_shift_c_16_32 = b[16..]
227        .iter()
228        .enumerate()
229        .map(|(i, elem)| xor((*elem).into(), c[(32 + (i + 16) - shift) % 32].into()));
230    let sum_16_32: <AB as AirBuilder>::Expr = pack_bits_le(xor_shift_c_16_32);
231
232    // As both b and c have been range checked to be boolean, all the (b ^ (c << shift))
233    // are also boolean and so this final check additionally has the effect of range checking a[0], a[1].
234    builder.assert_eq(a[0], sum_0_16);
235    builder.assert_eq(a[1], sum_16_32);
236}