p3_air/utils.rs
1//! A collection of utility functions helpful in defining AIR's.
2
3use core::array;
4
5use p3_field::{Field, FieldAlgebra};
6
7use crate::AirBuilder;
8
9/// Pack a collection of bits into a number.
10///
11/// Given vec = [v0, v1, ..., v_n] returns v0 + 2v_1 + ... + 2^n v_n
12#[inline]
13pub fn pack_bits_le<FA, Var, I>(iter: I) -> FA
14where
15 FA: FieldAlgebra,
16 Var: Into<FA> + Clone,
17 I: DoubleEndedIterator<Item = Var>,
18{
19 let mut output = FA::ZERO;
20 for elem in iter.rev() {
21 output = output.double();
22 output += elem.clone().into();
23 }
24 output
25}
26
27/// Computes the arithmetic generalization of boolean `xor`.
28///
29/// For boolean inputs, `x ^ y = x + y - 2 xy`.
30#[inline(always)]
31pub fn xor<FA: FieldAlgebra>(x: FA, y: FA) -> FA {
32 x.clone() + y.clone() - x * y.double()
33}
34
35/// Computes the arithmetic generalization of a triple `xor`.
36///
37/// For boolean inputs `x ^ y ^ z = x + y + z - 2(xy + xz + yz) + 4xyz`.
38#[inline(always)]
39pub fn xor3<FA: FieldAlgebra>(x: FA, y: FA, z: FA) -> FA {
40 // The cheapest way to implement this polynomial is to simply apply xor twice.
41 // This costs 2 adds, 2 subs, 2 muls and 2 doubles.
42 xor(x, xor(y, z))
43}
44
45/// Computes the arithmetic generalization of `andnot`.
46///
47/// For boolean inputs `(!x) & y = (1 - x)y`
48#[inline(always)]
49pub fn andn<FA: FieldAlgebra>(x: FA, y: FA) -> FA {
50 (FA::ONE - x) * y
51}
52
53/// Compute `xor` on a list of boolean field elements.
54///
55/// Verifies at debug time that all inputs are boolean.
56#[inline(always)]
57pub fn checked_xor<F: Field, const N: usize>(xs: [F; N]) -> F {
58 xs.into_iter().fold(F::ZERO, |acc, x| {
59 debug_assert!(x.is_zero() || x.is_one());
60 xor(acc, x)
61 })
62}
63
64/// Compute `andnot` on a pair of boolean field elements.
65///
66/// Verifies at debug time that both inputs are boolean.
67#[inline(always)]
68pub fn checked_andn<F: Field>(x: F, y: F) -> F {
69 debug_assert!(x.is_zero() || x.is_one());
70 debug_assert!(y.is_zero() || y.is_one());
71 andn(x, y)
72}
73
74/// Convert a 32-bit integer into an array of 32 0 or 1 field elements.
75///
76/// The output array is in little-endian order.
77#[inline]
78pub fn u32_to_bits_le<FA: FieldAlgebra>(val: u32) -> [FA; 32] {
79 array::from_fn(|i| FA::from_bool(val & (1 << i) != 0))
80}
81
82/// Convert a 64-bit integer into an array of 64 0 or 1 field elements.
83///
84/// The output array is in little-endian order.
85#[inline]
86pub fn u64_to_bits_le<FA: FieldAlgebra>(val: u64) -> [FA; 64] {
87 array::from_fn(|i| FA::from_bool(val & (1 << i) != 0))
88}
89
90/// Convert a 64-bit integer into an array of four field elements representing the 16 bit limb decomposition.
91///
92/// The output array is in little-endian order.
93#[inline]
94pub fn u64_to_16_bit_limbs<FA: FieldAlgebra>(val: u64) -> [FA; 4] {
95 array::from_fn(|i| FA::from_canonical_u16((val >> (16 * i)) as u16))
96}
97
98/// Verify that `a = b + c + d mod 2^32`
99///
100/// We assume that a, b, c, d are all given as `2, 16` bit limbs (e.g. `a = a[0] + 2^16 a[1]`) and
101/// each `16` bit limb has been range checked to ensure it contains a value in `[0, 2^16)`.
102///
103/// This function assumes we are working over a field with characteristic `P > 3*2^16`.
104#[inline]
105pub fn add3<AB: AirBuilder>(
106 builder: &mut AB,
107 a: &[<AB as AirBuilder>::Var; 2],
108 b: &[<AB as AirBuilder>::Var; 2],
109 c: &[<AB as AirBuilder>::Expr; 2],
110 d: &[<AB as AirBuilder>::Expr; 2],
111) {
112 // Define:
113 // acc = a - b - c - d (mod P)
114 // acc_16 = a[0] - b[0] - c[0] - d[0] (mod P)
115 //
116 // We perform 2 checks:
117 //
118 // (1) acc*(acc + 2^32)*(acc + 2*2^32) = 0.
119 // (2) acc_16*(acc_16 + 2^16)*(acc_16 + 2*2^16) = 0.
120 //
121 // We give a short proof for why this lets us conclude that a = b + c + d mod 2^32:
122 //
123 // As all 16 bit limbs have been range checked, we know that a, b, c, d lie in [0, 2^32) and hence
124 // a = b + c + d mod 2^32 if and only if, over the integers, a - b - c - d = 0, -2^32 or -2*2^32.
125 //
126 // Equation (1) verifies that a - b - c - d mod P = 0, -2^32 or -2*2^32.
127 //
128 // Field overflow cannot occur when computing acc_16 as our characteristic is larger than 3*2^16.
129 // Hence, equation (2) verifies that, over the integers, a[0] - b[0] - c[0] - d[0] = 0, -2^16 or -2*2^16.
130 // Either way we can immediately conclude that a - b - c - d = 0 mod 2^16.
131 //
132 // Now we can use the chinese remainder theorem to combine these results to conclude that
133 // a - b - c - d mod 2^16P = 0, -2^32 or -2*2^32.
134 //
135 // No overflow can occur mod 2^16 P as 2^16 P > 3*2^32 and a, b, c, d < 2^32. Hence we conclude that
136 // over the integers a - b - c - d = 0, -2^32 or -2*2^32 which implies a = b + c + d mod 2^32.
137
138 // By assumption P > 3*2^16 so we can safely use from_canonical here.
139 let two_16 = <AB as AirBuilder>::Expr::from_canonical_u32(1 << 16);
140 let two_32 = two_16.square();
141
142 let acc_16 = a[0] - b[0] - c[0].clone() - d[0].clone();
143 let acc_32 = a[1] - b[1] - c[1].clone() - d[1].clone();
144 let acc = acc_16.clone() + two_16.clone() * acc_32;
145
146 builder.assert_zero(acc.clone() * (acc.clone() + two_32.clone()) * (acc + two_32.double()));
147 builder.assert_zero(
148 acc_16.clone() * (acc_16.clone() + two_16.clone()) * (acc_16 + two_16.double()),
149 );
150}
151
152/// Verify that `a = b + c mod 2^32`
153///
154/// We assume that a, b, c are all given as `2, 16` bit limbs (e.g. `a = a[0] + 2^16 a[1]`) and
155/// each `16` bit limb has been range checked to ensure it contains a value in `[0, 2^16)`.
156///
157/// This function assumes we are working over a field with characteristic `P > 2^17`.
158#[inline]
159pub fn add2<AB: AirBuilder>(
160 builder: &mut AB,
161 a: &[<AB as AirBuilder>::Var; 2],
162 b: &[<AB as AirBuilder>::Var; 2],
163 c: &[<AB as AirBuilder>::Expr; 2],
164) {
165 // Define:
166 // acc = a - b - c (mod P)
167 // acc_16 = a[0] - b[0] - c[0] (mod P)
168 //
169 // We perform 2 checks:
170 //
171 // (1) acc*(acc + 2^32) = 0.
172 // (2) acc_16*(acc_16 + 2^16) = 0.
173 //
174 // We give a short proof for why this lets us conclude that a = b + c mod 2^32:
175 //
176 // As all 16 bit limbs have been range checked, we know that a, b, c lie in [0, 2^32) and hence
177 // a = b + c mod 2^32 if and only if, over the integers, a - b - c = 0 or -2^32.
178 //
179 // Equation (1) verifies that either a - b - c = 0 mod P or a - b - c = -2^32 mod P.
180 //
181 // Field overflow cannot occur when computing acc_16 as our characteristic is larger than 2^17.
182 // Hence, equation (2) verifies that, over the integers, a[0] - b[0] - c[0] = 0 or -2^16.
183 // Either way we can immediately conclude that a - b - c = 0 mod 2^16.
184 //
185 // Now we can use the chinese remainder theorem to combine these results to conclude that
186 // either a - b - c = 0 mod 2^16 P or a - b - c = -2^32 mod 2^16 P.
187 //
188 // No overflow can occur mod 2^16 P as 2^16 P > 2^33 and a, b, c < 2^32. Hence we conclude that
189 // over the integers a - b - c = 0 or a - b - c = -2^32 which is equivalent to a = b + c mod 2^32.
190
191 // By assumption P > 2^17 so we can safely use from_canonical here.
192 let two_16 = <AB as AirBuilder>::Expr::from_canonical_u32(1 << 16);
193 let two_32 = two_16.square();
194
195 let acc_16 = a[0] - b[0] - c[0].clone();
196 let acc_32 = a[1] - b[1] - c[1].clone();
197 let acc = acc_16.clone() + two_16.clone() * acc_32;
198
199 builder.assert_zero(acc.clone() * (acc + two_32));
200 builder.assert_zero(acc_16.clone() * (acc_16 + two_16));
201}
202
203/// Verify that `a = (b ^ (c << shift))`
204///
205/// We assume that a is given as `2 16` bit limbs and both b and c are unpacked into 32 individual bits.
206/// We assume that the bits of b have been range checked but not the inputs in c or a. Both of these are
207/// range checked as part of this function.
208#[inline]
209pub fn xor_32_shift<AB: AirBuilder>(
210 builder: &mut AB,
211 a: &[<AB as AirBuilder>::Var; 2],
212 b: &[<AB as AirBuilder>::Var; 32],
213 c: &[<AB as AirBuilder>::Var; 32],
214 shift: usize,
215) {
216 // First we range check all elements of c.
217 c.iter().for_each(|&elem| builder.assert_bool(elem));
218
219 // Next we compute (b ^ (c << shift)) and pack the result into two 16-bit integers.
220 let xor_shift_c_0_16 = b[..16]
221 .iter()
222 .enumerate()
223 .map(|(i, elem)| xor((*elem).into(), c[(32 + i - shift) % 32].into()));
224 let sum_0_16: <AB as AirBuilder>::Expr = pack_bits_le(xor_shift_c_0_16);
225
226 let xor_shift_c_16_32 = b[16..]
227 .iter()
228 .enumerate()
229 .map(|(i, elem)| xor((*elem).into(), c[(32 + (i + 16) - shift) % 32].into()));
230 let sum_16_32: <AB as AirBuilder>::Expr = pack_bits_le(xor_shift_c_16_32);
231
232 // As both b and c have been range checked to be boolean, all the (b ^ (c << shift))
233 // are also boolean and so this final check additionally has the effect of range checking a[0], a[1].
234 builder.assert_eq(a[0], sum_0_16);
235 builder.assert_eq(a[1], sum_16_32);
236}