p3_air/utils.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
//! A collection of utility functions helpful in defining AIR's.
use core::array;
use p3_field::{Field, FieldAlgebra};
use crate::AirBuilder;
/// Pack a collection of bits into a number.
///
/// Given vec = [v0, v1, ..., v_n] returns v0 + 2v_1 + ... + 2^n v_n
#[inline]
pub fn pack_bits_le<FA, Var, I>(iter: I) -> FA
where
FA: FieldAlgebra,
Var: Into<FA> + Clone,
I: DoubleEndedIterator<Item = Var>,
{
let mut output = FA::ZERO;
for elem in iter.rev() {
output = output.double();
output += elem.clone().into();
}
output
}
/// Computes the arithmetic generalization of boolean `xor`.
///
/// For boolean inputs, `x ^ y = x + y - 2 xy`.
#[inline(always)]
pub fn xor<FA: FieldAlgebra>(x: FA, y: FA) -> FA {
x.clone() + y.clone() - x * y.double()
}
/// Computes the arithmetic generalization of a triple `xor`.
///
/// For boolean inputs `x ^ y ^ z = x + y + z - 2(xy + xz + yz) + 4xyz`.
#[inline(always)]
pub fn xor3<FA: FieldAlgebra>(x: FA, y: FA, z: FA) -> FA {
// The cheapest way to implement this polynomial is to simply apply xor twice.
// This costs 2 adds, 2 subs, 2 muls and 2 doubles.
xor(x, xor(y, z))
}
/// Computes the arithmetic generalization of `andnot`.
///
/// For boolean inputs `(!x) & y = (1 - x)y`
#[inline(always)]
pub fn andn<FA: FieldAlgebra>(x: FA, y: FA) -> FA {
(FA::ONE - x) * y
}
/// Compute `xor` on a list of boolean field elements.
///
/// Verifies at debug time that all inputs are boolean.
#[inline(always)]
pub fn checked_xor<F: Field, const N: usize>(xs: [F; N]) -> F {
xs.into_iter().fold(F::ZERO, |acc, x| {
debug_assert!(x.is_zero() || x.is_one());
xor(acc, x)
})
}
/// Compute `andnot` on a pair of boolean field elements.
///
/// Verifies at debug time that both inputs are boolean.
#[inline(always)]
pub fn checked_andn<F: Field>(x: F, y: F) -> F {
debug_assert!(x.is_zero() || x.is_one());
debug_assert!(y.is_zero() || y.is_one());
andn(x, y)
}
/// Convert a 32-bit integer into an array of 32 0 or 1 field elements.
///
/// The output array is in little-endian order.
#[inline]
pub fn u32_to_bits_le<FA: FieldAlgebra>(val: u32) -> [FA; 32] {
// We do this over F::from_canonical_u32 as from_canonical_u32 can be slow
// like in the case of monty field.
array::from_fn(|i| {
if val & (1 << i) != 0 {
FA::ONE
} else {
FA::ZERO
}
})
}
/// Verify that `a = b + c + d mod 2^32`
///
/// We assume that a, b, c, d are all given as `2, 16` bit limbs (e.g. `a = a[0] + 2^16 a[1]`) and
/// each `16` bit limb has been range checked to ensure it contains a value in `[0, 2^16)`.
///
/// This function assumes we are working over a field with characteristic `P > 3*2^16`.
#[inline]
pub fn add3<AB: AirBuilder>(
builder: &mut AB,
a: &[<AB as AirBuilder>::Var; 2],
b: &[<AB as AirBuilder>::Var; 2],
c: &[<AB as AirBuilder>::Expr; 2],
d: &[<AB as AirBuilder>::Expr; 2],
) {
// Define:
// acc = a - b - c - d (mod P)
// acc_16 = a[0] - b[0] - c[0] - d[0] (mod P)
//
// We perform 2 checks:
//
// (1) acc*(acc + 2^32)*(acc + 2*2^32) = 0.
// (2) acc_16*(acc_16 + 2^16)*(acc_16 + 2*2^16) = 0.
//
// We give a short proof for why this lets us conclude that a = b + c + d mod 2^32:
//
// As all 16 bit limbs have been range checked, we know that a, b, c, d lie in [0, 2^32) and hence
// a = b + c + d mod 2^32 if and only if, over the integers, a - b - c - d = 0, -2^32 or -2*2^32.
//
// Equation (1) verifies that a - b - c - d mod P = 0, -2^32 or -2*2^32.
//
// Field overflow cannot occur when computing acc_16 as our characteristic is larger than 3*2^16.
// Hence, equation (2) verifies that, over the integers, a[0] - b[0] - c[0] - d[0] = 0, -2^16 or -2*2^16.
// Either way we can immediately conclude that a - b - c - d = 0 mod 2^16.
//
// Now we can use the chinese remainder theorem to combine these results to conclude that
// a - b - c - d mod 2^16P = 0, -2^32 or -2*2^32.
//
// No overflow can occur mod 2^16 P as 2^16 P > 3*2^32 and a, b, c, d < 2^32. Hence we conclude that
// over the integers a - b - c - d = 0, -2^32 or -2*2^32 which implies a = b + c + d mod 2^32.
// By assumption P > 3*2^16 so we can safely use from_canonical here.
let two_16 = <AB as AirBuilder>::Expr::from_canonical_u32(1 << 16);
let two_32 = two_16.square();
let acc_16 = a[0] - b[0] - c[0].clone() - d[0].clone();
let acc_32 = a[1] - b[1] - c[1].clone() - d[1].clone();
let acc = acc_16.clone() + two_16.clone() * acc_32;
builder.assert_zero(acc.clone() * (acc.clone() + two_32.clone()) * (acc + two_32.double()));
builder.assert_zero(
acc_16.clone() * (acc_16.clone() + two_16.clone()) * (acc_16 + two_16.double()),
);
}
/// Verify that `a = b + c mod 2^32`
///
/// We assume that a, b, c are all given as `2, 16` bit limbs (e.g. `a = a[0] + 2^16 a[1]`) and
/// each `16` bit limb has been range checked to ensure it contains a value in `[0, 2^16)`.
///
/// This function assumes we are working over a field with characteristic `P > 2^17`.
#[inline]
pub fn add2<AB: AirBuilder>(
builder: &mut AB,
a: &[<AB as AirBuilder>::Var; 2],
b: &[<AB as AirBuilder>::Var; 2],
c: &[<AB as AirBuilder>::Expr; 2],
) {
// Define:
// acc = a - b - c (mod P)
// acc_16 = a[0] - b[0] - c[0] (mod P)
//
// We perform 2 checks:
//
// (1) acc*(acc + 2^32) = 0.
// (2) acc_16*(acc_16 + 2^16) = 0.
//
// We give a short proof for why this lets us conclude that a = b + c mod 2^32:
//
// As all 16 bit limbs have been range checked, we know that a, b, c lie in [0, 2^32) and hence
// a = b + c mod 2^32 if and only if, over the integers, a - b - c = 0 or -2^32.
//
// Equation (1) verifies that either a - b - c = 0 mod P or a - b - c = -2^32 mod P.
//
// Field overflow cannot occur when computing acc_16 as our characteristic is larger than 2^17.
// Hence, equation (2) verifies that, over the integers, a[0] - b[0] - c[0] = 0 or -2^16.
// Either way we can immediately conclude that a - b - c = 0 mod 2^16.
//
// Now we can use the chinese remainder theorem to combine these results to conclude that
// either a - b - c = 0 mod 2^16 P or a - b - c = -2^32 mod 2^16 P.
//
// No overflow can occur mod 2^16 P as 2^16 P > 2^33 and a, b, c < 2^32. Hence we conclude that
// over the integers a - b - c = 0 or a - b - c = -2^32 which is equivalent to a = b + c mod 2^32.
// By assumption P > 2^17 so we can safely use from_canonical here.
let two_16 = <AB as AirBuilder>::Expr::from_canonical_u32(1 << 16);
let two_32 = two_16.square();
let acc_16 = a[0] - b[0] - c[0].clone();
let acc_32 = a[1] - b[1] - c[1].clone();
let acc = acc_16.clone() + two_16.clone() * acc_32;
builder.assert_zero(acc.clone() * (acc + two_32));
builder.assert_zero(acc_16.clone() * (acc_16 + two_16));
}
/// Verify that `a = (b ^ (c << shift))`
///
/// We assume that a is given as `2 16` bit limbs and both b and c are unpacked into 32 individual bits.
/// We assume that the bits of b have been range checked but not the inputs in c or a. Both of these are
/// range checked as part of this function.
#[inline]
pub fn xor_32_shift<AB: AirBuilder>(
builder: &mut AB,
a: &[<AB as AirBuilder>::Var; 2],
b: &[<AB as AirBuilder>::Var; 32],
c: &[<AB as AirBuilder>::Var; 32],
shift: usize,
) {
// First we range check all elements of c.
c.iter().for_each(|&elem| builder.assert_bool(elem));
// Next we compute (b ^ (c << shift)) and pack the result into two 16-bit integers.
let xor_shift_c_0_16 = b[..16]
.iter()
.enumerate()
.map(|(i, elem)| xor((*elem).into(), c[(32 + i - shift) % 32].into()));
let sum_0_16: <AB as AirBuilder>::Expr = pack_bits_le(xor_shift_c_0_16);
let xor_shift_c_16_32 = b[16..]
.iter()
.enumerate()
.map(|(i, elem)| xor((*elem).into(), c[(32 + (i + 16) - shift) % 32].into()));
let sum_16_32: <AB as AirBuilder>::Expr = pack_bits_le(xor_shift_c_16_32);
// As both b and c have been range checked to be boolean, all the (b ^ (c << shift))
// are also boolean and so this final check additionally has the effect of range checking a[0], a[1].
builder.assert_eq(a[0], sum_0_16);
builder.assert_eq(a[1], sum_16_32);
}