secp256k1/
ecdh.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
// SPDX-License-Identifier: CC0-1.0

//! Support for shared secret computations.
//!

use core::borrow::Borrow;
use core::{ptr, str};

use secp256k1_sys::types::{c_int, c_uchar, c_void};

use crate::ffi::{self, CPtr};
use crate::key::{PublicKey, SecretKey};
use crate::{constants, Error};

// The logic for displaying shared secrets relies on this (see `secret.rs`).
const SHARED_SECRET_SIZE: usize = constants::SECRET_KEY_SIZE;

/// Enables two parties to create a shared secret without revealing their own secrets.
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "rand-std")] {
/// # use secp256k1::{rand, Secp256k1};
/// # use secp256k1::ecdh::SharedSecret;
/// let s = Secp256k1::new();
/// let (sk1, pk1) = s.generate_keypair(&mut rand::thread_rng());
/// let (sk2, pk2) = s.generate_keypair(&mut rand::thread_rng());
/// let sec1 = SharedSecret::new(&pk2, &sk1);
/// let sec2 = SharedSecret::new(&pk1, &sk2);
/// assert_eq!(sec1, sec2);
/// # }
// ```
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct SharedSecret([u8; SHARED_SECRET_SIZE]);
impl_display_secret!(SharedSecret);
impl_non_secure_erase!(SharedSecret, 0, [0u8; SHARED_SECRET_SIZE]);

impl SharedSecret {
    /// Creates a new shared secret from a pubkey and secret key.
    #[inline]
    pub fn new(point: &PublicKey, scalar: &SecretKey) -> SharedSecret {
        let mut buf = [0u8; SHARED_SECRET_SIZE];
        let res = unsafe {
            ffi::secp256k1_ecdh(
                ffi::secp256k1_context_no_precomp,
                buf.as_mut_ptr(),
                point.as_c_ptr(),
                scalar.as_c_ptr(),
                ffi::secp256k1_ecdh_hash_function_default,
                ptr::null_mut(),
            )
        };
        debug_assert_eq!(res, 1);
        SharedSecret(buf)
    }

    /// Returns the shared secret as a byte value.
    #[inline]
    pub fn secret_bytes(&self) -> [u8; SHARED_SECRET_SIZE] { self.0 }

    /// Creates a shared secret from `bytes` array.
    #[inline]
    pub fn from_bytes(bytes: [u8; SHARED_SECRET_SIZE]) -> SharedSecret { SharedSecret(bytes) }

    /// Creates a shared secret from `bytes` slice.
    #[inline]
    pub fn from_slice(bytes: &[u8]) -> Result<SharedSecret, Error> {
        match bytes.len() {
            SHARED_SECRET_SIZE => {
                let mut ret = [0u8; SHARED_SECRET_SIZE];
                ret[..].copy_from_slice(bytes);
                Ok(SharedSecret(ret))
            }
            _ => Err(Error::InvalidSharedSecret),
        }
    }
}

impl str::FromStr for SharedSecret {
    type Err = Error;
    fn from_str(s: &str) -> Result<SharedSecret, Error> {
        let mut res = [0u8; SHARED_SECRET_SIZE];
        match crate::from_hex(s, &mut res) {
            Ok(SHARED_SECRET_SIZE) => Ok(SharedSecret::from_bytes(res)),
            _ => Err(Error::InvalidSharedSecret),
        }
    }
}

impl Borrow<[u8]> for SharedSecret {
    fn borrow(&self) -> &[u8] { &self.0 }
}

impl AsRef<[u8]> for SharedSecret {
    fn as_ref(&self) -> &[u8] { &self.0 }
}

/// Creates a shared point from public key and secret key.
///
/// **Important: use of a strong cryptographic hash function may be critical to security! Do NOT use
/// unless you understand cryptographical implications.** If not, use SharedSecret instead.
///
/// Can be used like `SharedSecret` but caller is responsible for then hashing the returned buffer.
/// This allows for the use of a custom hash function since `SharedSecret` uses SHA256.
///
/// # Returns
///
/// 64 bytes representing the (x,y) co-ordinates of a point on the curve (32 bytes each).
///
/// # Examples
/// ```
/// # #[cfg(all(feature = "hashes-std", feature = "rand-std"))] {
/// # use secp256k1::{ecdh, rand, Secp256k1, PublicKey, SecretKey};
/// # use secp256k1::hashes::{Hash, sha512};
///
/// let s = Secp256k1::new();
/// let (sk1, pk1) = s.generate_keypair(&mut rand::thread_rng());
/// let (sk2, pk2) = s.generate_keypair(&mut rand::thread_rng());
///
/// let point1 = ecdh::shared_secret_point(&pk2, &sk1);
/// let secret1 = sha512::Hash::hash(&point1);
/// let point2 = ecdh::shared_secret_point(&pk1, &sk2);
/// let secret2 = sha512::Hash::hash(&point2);
/// assert_eq!(secret1, secret2)
/// # }
/// ```
pub fn shared_secret_point(point: &PublicKey, scalar: &SecretKey) -> [u8; 64] {
    let mut xy = [0u8; 64];

    let res = unsafe {
        ffi::secp256k1_ecdh(
            ffi::secp256k1_context_no_precomp,
            xy.as_mut_ptr(),
            point.as_c_ptr(),
            scalar.as_c_ptr(),
            Some(c_callback),
            ptr::null_mut(),
        )
    };
    // Our callback *always* returns 1.
    // The scalar was verified to be valid (0 > scalar > group_order) via the type system.
    debug_assert_eq!(res, 1);
    xy
}

unsafe extern "C" fn c_callback(
    output: *mut c_uchar,
    x: *const c_uchar,
    y: *const c_uchar,
    _data: *mut c_void,
) -> c_int {
    ptr::copy_nonoverlapping(x, output, 32);
    ptr::copy_nonoverlapping(y, output.offset(32), 32);
    1
}

#[cfg(feature = "serde")]
impl ::serde::Serialize for SharedSecret {
    fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
        if s.is_human_readable() {
            let mut buf = [0u8; SHARED_SECRET_SIZE * 2];
            s.serialize_str(crate::to_hex(&self.0, &mut buf).expect("fixed-size hex serialization"))
        } else {
            s.serialize_bytes(self.as_ref())
        }
    }
}

#[cfg(feature = "serde")]
impl<'de> ::serde::Deserialize<'de> for SharedSecret {
    fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<Self, D::Error> {
        if d.is_human_readable() {
            d.deserialize_str(super::serde_util::FromStrVisitor::new(
                "a hex string representing 32 byte SharedSecret",
            ))
        } else {
            d.deserialize_bytes(super::serde_util::BytesVisitor::new(
                "raw 32 bytes SharedSecret",
                SharedSecret::from_slice,
            ))
        }
    }
}

#[cfg(test)]
#[allow(unused_imports)]
mod tests {
    #[cfg(target_arch = "wasm32")]
    use wasm_bindgen_test::wasm_bindgen_test as test;

    use super::SharedSecret;
    use crate::Secp256k1;

    #[test]
    #[cfg(feature = "rand-std")]
    fn ecdh() {
        let s = Secp256k1::signing_only();
        let (sk1, pk1) = s.generate_keypair(&mut rand::thread_rng());
        let (sk2, pk2) = s.generate_keypair(&mut rand::thread_rng());

        let sec1 = SharedSecret::new(&pk2, &sk1);
        let sec2 = SharedSecret::new(&pk1, &sk2);
        let sec_odd = SharedSecret::new(&pk1, &sk1);
        assert_eq!(sec1, sec2);
        assert!(sec_odd != sec2);
    }

    #[test]
    fn test_c_callback() {
        let x = [5u8; 32];
        let y = [7u8; 32];
        let mut output = [0u8; 64];
        let res = unsafe {
            super::c_callback(output.as_mut_ptr(), x.as_ptr(), y.as_ptr(), core::ptr::null_mut())
        };
        assert_eq!(res, 1);
        let mut new_x = [0u8; 32];
        let mut new_y = [0u8; 32];
        new_x.copy_from_slice(&output[..32]);
        new_y.copy_from_slice(&output[32..]);
        assert_eq!(x, new_x);
        assert_eq!(y, new_y);
    }

    #[test]
    #[cfg(not(secp256k1_fuzz))]
    #[cfg(all(feature = "hashes-std", feature = "rand-std"))]
    fn hashes_and_sys_generate_same_secret() {
        use hashes::{sha256, Hash, HashEngine};

        use crate::ecdh::shared_secret_point;

        let s = Secp256k1::signing_only();
        let (sk1, _) = s.generate_keypair(&mut rand::thread_rng());
        let (_, pk2) = s.generate_keypair(&mut rand::thread_rng());

        let secret_sys = SharedSecret::new(&pk2, &sk1);

        let xy = shared_secret_point(&pk2, &sk1);

        // Mimics logic in `bitcoin-core/secp256k1/src/module/main_impl.h`
        let version = (xy[63] & 0x01) | 0x02;
        let mut engine = sha256::HashEngine::default();
        engine.input(&[version]);
        engine.input(&xy.as_ref()[..32]);
        let secret_bh = sha256::Hash::from_engine(engine);

        assert_eq!(secret_bh.as_byte_array(), secret_sys.as_ref());
    }

    #[test]
    #[cfg(all(feature = "serde", feature = "alloc"))]
    fn serde() {
        use serde_test::{assert_tokens, Configure, Token};
        #[rustfmt::skip]
        static BYTES: [u8; 32] = [
            1, 1, 1, 1, 1, 1, 1, 1,
            0, 1, 2, 3, 4, 5, 6, 7,
            0xff, 0xff, 0, 0, 0xff, 0xff, 0, 0,
            99, 99, 99, 99, 99, 99, 99, 99
        ];
        static STR: &str = "01010101010101010001020304050607ffff0000ffff00006363636363636363";

        let secret = SharedSecret::from_slice(&BYTES).unwrap();

        assert_tokens(&secret.compact(), &[Token::BorrowedBytes(&BYTES[..])]);
        assert_tokens(&secret.compact(), &[Token::Bytes(&BYTES)]);
        assert_tokens(&secret.compact(), &[Token::ByteBuf(&BYTES)]);

        assert_tokens(&secret.readable(), &[Token::BorrowedStr(STR)]);
        assert_tokens(&secret.readable(), &[Token::Str(STR)]);
        assert_tokens(&secret.readable(), &[Token::String(STR)]);
    }
}

#[cfg(bench)]
#[cfg(feature = "rand-std")] // Currently only a single bench that requires "rand-std".
mod benches {
    use test::{black_box, Bencher};

    use super::SharedSecret;
    use crate::Secp256k1;

    #[bench]
    pub fn bench_ecdh(bh: &mut Bencher) {
        let s = Secp256k1::signing_only();
        let (sk, pk) = s.generate_keypair(&mut rand::thread_rng());

        bh.iter(|| {
            let res = SharedSecret::new(&pk, &sk);
            black_box(res);
        });
    }
}