halo2_proofs/plonk/permutation/
prover.rs

1use group::{
2    ff::{BatchInvert, Field},
3    Curve,
4};
5use rand_core::RngCore;
6use std::iter::{self, ExactSizeIterator};
7
8use super::super::{circuit::Any, ChallengeBeta, ChallengeGamma, ChallengeX};
9use super::{Argument, ProvingKey};
10use crate::{
11    arithmetic::{eval_polynomial, parallelize, CurveAffine, FieldExt},
12    plonk::{self, Error},
13    poly::{
14        self,
15        commitment::{Blind, Params},
16        multiopen::ProverQuery,
17        Coeff, ExtendedLagrangeCoeff, LagrangeCoeff, Polynomial, Rotation,
18    },
19    transcript::{EncodedChallenge, TranscriptWrite},
20};
21
22pub struct CommittedSet<C: CurveAffine, Ev> {
23    permutation_product_poly: Polynomial<C::Scalar, Coeff>,
24    permutation_product_coset: poly::AstLeaf<Ev, ExtendedLagrangeCoeff>,
25    permutation_product_blind: Blind<C::Scalar>,
26}
27
28pub(crate) struct Committed<C: CurveAffine, Ev> {
29    sets: Vec<CommittedSet<C, Ev>>,
30}
31
32pub struct ConstructedSet<C: CurveAffine> {
33    permutation_product_poly: Polynomial<C::Scalar, Coeff>,
34    permutation_product_blind: Blind<C::Scalar>,
35}
36
37pub(crate) struct Constructed<C: CurveAffine> {
38    sets: Vec<ConstructedSet<C>>,
39}
40
41pub(crate) struct Evaluated<C: CurveAffine> {
42    constructed: Constructed<C>,
43}
44
45impl Argument {
46    pub(in crate::plonk) fn commit<
47        C: CurveAffine,
48        E: EncodedChallenge<C>,
49        Ev: Copy + Send + Sync,
50        R: RngCore,
51        T: TranscriptWrite<C, E>,
52    >(
53        &self,
54        params: &Params<C>,
55        pk: &plonk::ProvingKey<C>,
56        pkey: &ProvingKey<C>,
57        advice: &[Polynomial<C::Scalar, LagrangeCoeff>],
58        fixed: &[Polynomial<C::Scalar, LagrangeCoeff>],
59        instance: &[Polynomial<C::Scalar, LagrangeCoeff>],
60        beta: ChallengeBeta<C>,
61        gamma: ChallengeGamma<C>,
62        evaluator: &mut poly::Evaluator<Ev, C::Scalar, ExtendedLagrangeCoeff>,
63        mut rng: R,
64        transcript: &mut T,
65    ) -> Result<Committed<C, Ev>, Error> {
66        let domain = &pk.vk.domain;
67
68        // How many columns can be included in a single permutation polynomial?
69        // We need to multiply by z(X) and (1 - (l_last(X) + l_blind(X))). This
70        // will never underflow because of the requirement of at least a degree
71        // 3 circuit for the permutation argument.
72        assert!(pk.vk.cs.degree() >= 3);
73        let chunk_len = pk.vk.cs.degree() - 2;
74        let blinding_factors = pk.vk.cs.blinding_factors();
75
76        // Each column gets its own delta power.
77        let mut deltaomega = C::Scalar::one();
78
79        // Track the "last" value from the previous column set
80        let mut last_z = C::Scalar::one();
81
82        let mut sets = vec![];
83
84        for (columns, permutations) in self
85            .columns
86            .chunks(chunk_len)
87            .zip(pkey.permutations.chunks(chunk_len))
88        {
89            // Goal is to compute the products of fractions
90            //
91            // (p_j(\omega^i) + \delta^j \omega^i \beta + \gamma) /
92            // (p_j(\omega^i) + \beta s_j(\omega^i) + \gamma)
93            //
94            // where p_j(X) is the jth column in this permutation,
95            // and i is the ith row of the column.
96
97            let mut modified_values = vec![C::Scalar::one(); params.n as usize];
98
99            // Iterate over each column of the permutation
100            for (&column, permuted_column_values) in columns.iter().zip(permutations.iter()) {
101                let values = match column.column_type() {
102                    Any::Advice => advice,
103                    Any::Fixed => fixed,
104                    Any::Instance => instance,
105                };
106                parallelize(&mut modified_values, |modified_values, start| {
107                    for ((modified_values, value), permuted_value) in modified_values
108                        .iter_mut()
109                        .zip(values[column.index()][start..].iter())
110                        .zip(permuted_column_values[start..].iter())
111                    {
112                        *modified_values *= &(*beta * permuted_value + &*gamma + value);
113                    }
114                });
115            }
116
117            // Invert to obtain the denominator for the permutation product polynomial
118            modified_values.batch_invert();
119
120            // Iterate over each column again, this time finishing the computation
121            // of the entire fraction by computing the numerators
122            for &column in columns.iter() {
123                let omega = domain.get_omega();
124                let values = match column.column_type() {
125                    Any::Advice => advice,
126                    Any::Fixed => fixed,
127                    Any::Instance => instance,
128                };
129                parallelize(&mut modified_values, |modified_values, start| {
130                    let mut deltaomega = deltaomega * &omega.pow_vartime(&[start as u64, 0, 0, 0]);
131                    for (modified_values, value) in modified_values
132                        .iter_mut()
133                        .zip(values[column.index()][start..].iter())
134                    {
135                        // Multiply by p_j(\omega^i) + \delta^j \omega^i \beta
136                        *modified_values *= &(deltaomega * &*beta + &*gamma + value);
137                        deltaomega *= &omega;
138                    }
139                });
140                deltaomega *= &C::Scalar::DELTA;
141            }
142
143            // The modified_values vector is a vector of products of fractions
144            // of the form
145            //
146            // (p_j(\omega^i) + \delta^j \omega^i \beta + \gamma) /
147            // (p_j(\omega^i) + \beta s_j(\omega^i) + \gamma)
148            //
149            // where i is the index into modified_values, for the jth column in
150            // the permutation
151
152            // Compute the evaluations of the permutation product polynomial
153            // over our domain, starting with z[0] = 1
154            let mut z = vec![last_z];
155            for row in 1..(params.n as usize) {
156                let mut tmp = z[row - 1];
157
158                tmp *= &modified_values[row - 1];
159                z.push(tmp);
160            }
161            let mut z = domain.lagrange_from_vec(z);
162            // Set blinding factors
163            for z in &mut z[params.n as usize - blinding_factors..] {
164                *z = C::Scalar::random(&mut rng);
165            }
166            // Set new last_z
167            last_z = z[params.n as usize - (blinding_factors + 1)];
168
169            let blind = Blind(C::Scalar::random(&mut rng));
170
171            let permutation_product_commitment_projective = params.commit_lagrange(&z, blind);
172            let permutation_product_blind = blind;
173            let z = domain.lagrange_to_coeff(z);
174            let permutation_product_poly = z.clone();
175
176            let permutation_product_coset =
177                evaluator.register_poly(domain.coeff_to_extended(z.clone()));
178
179            let permutation_product_commitment =
180                permutation_product_commitment_projective.to_affine();
181
182            // Hash the permutation product commitment
183            transcript.write_point(permutation_product_commitment)?;
184
185            sets.push(CommittedSet {
186                permutation_product_poly,
187                permutation_product_coset,
188                permutation_product_blind,
189            });
190        }
191
192        Ok(Committed { sets })
193    }
194}
195
196impl<C: CurveAffine, Ev: Copy + Send + Sync> Committed<C, Ev> {
197    pub(in crate::plonk) fn construct<'a>(
198        self,
199        pk: &'a plonk::ProvingKey<C>,
200        p: &'a Argument,
201        advice_cosets: &'a [poly::AstLeaf<Ev, ExtendedLagrangeCoeff>],
202        fixed_cosets: &'a [poly::AstLeaf<Ev, ExtendedLagrangeCoeff>],
203        instance_cosets: &'a [poly::AstLeaf<Ev, ExtendedLagrangeCoeff>],
204        permutation_cosets: &'a [poly::AstLeaf<Ev, ExtendedLagrangeCoeff>],
205        l0: poly::AstLeaf<Ev, ExtendedLagrangeCoeff>,
206        l_blind: poly::AstLeaf<Ev, ExtendedLagrangeCoeff>,
207        l_last: poly::AstLeaf<Ev, ExtendedLagrangeCoeff>,
208        beta: ChallengeBeta<C>,
209        gamma: ChallengeGamma<C>,
210    ) -> (
211        Constructed<C>,
212        impl Iterator<Item = poly::Ast<Ev, C::Scalar, ExtendedLagrangeCoeff>> + 'a,
213    ) {
214        let chunk_len = pk.vk.cs.degree() - 2;
215        let blinding_factors = pk.vk.cs.blinding_factors();
216        let last_rotation = Rotation(-((blinding_factors + 1) as i32));
217
218        let constructed = Constructed {
219            sets: self
220                .sets
221                .iter()
222                .map(|set| ConstructedSet {
223                    permutation_product_poly: set.permutation_product_poly.clone(),
224                    permutation_product_blind: set.permutation_product_blind,
225                })
226                .collect(),
227        };
228
229        let expressions = iter::empty()
230            // Enforce only for the first set.
231            // l_0(X) * (1 - z_0(X)) = 0
232            .chain(
233                self.sets
234                    .first()
235                    .map(|first_set| (poly::Ast::one() - first_set.permutation_product_coset) * l0),
236            )
237            // Enforce only for the last set.
238            // l_last(X) * (z_l(X)^2 - z_l(X)) = 0
239            .chain(self.sets.last().map(|last_set| {
240                ((poly::Ast::from(last_set.permutation_product_coset)
241                    * last_set.permutation_product_coset)
242                    - last_set.permutation_product_coset)
243                    * l_last
244            }))
245            // Except for the first set, enforce.
246            // l_0(X) * (z_i(X) - z_{i-1}(\omega^(last) X)) = 0
247            .chain(
248                self.sets
249                    .iter()
250                    .skip(1)
251                    .zip(self.sets.iter())
252                    .map(|(set, last_set)| {
253                        (poly::Ast::from(set.permutation_product_coset)
254                            - last_set
255                                .permutation_product_coset
256                                .with_rotation(last_rotation))
257                            * l0
258                    })
259                    .collect::<Vec<_>>(),
260            )
261            // And for all the sets we enforce:
262            // (1 - (l_last(X) + l_blind(X))) * (
263            //   z_i(\omega X) \prod_j (p(X) + \beta s_j(X) + \gamma)
264            // - z_i(X) \prod_j (p(X) + \delta^j \beta X + \gamma)
265            // )
266            .chain(
267                self.sets
268                    .into_iter()
269                    .zip(p.columns.chunks(chunk_len))
270                    .zip(permutation_cosets.chunks(chunk_len))
271                    .enumerate()
272                    .map(move |(chunk_index, ((set, columns), cosets))| {
273                        let mut left = poly::Ast::<_, C::Scalar, _>::from(
274                            set.permutation_product_coset
275                                .with_rotation(Rotation::next()),
276                        );
277                        for (values, permutation) in columns
278                            .iter()
279                            .map(|&column| match column.column_type() {
280                                Any::Advice => &advice_cosets[column.index()],
281                                Any::Fixed => &fixed_cosets[column.index()],
282                                Any::Instance => &instance_cosets[column.index()],
283                            })
284                            .zip(cosets.iter())
285                        {
286                            left *= poly::Ast::<_, C::Scalar, _>::from(*values)
287                                + (poly::Ast::ConstantTerm(*beta) * poly::Ast::from(*permutation))
288                                + poly::Ast::ConstantTerm(*gamma);
289                        }
290
291                        let mut right = poly::Ast::from(set.permutation_product_coset);
292                        let mut current_delta = *beta
293                            * &(C::Scalar::DELTA.pow_vartime(&[(chunk_index * chunk_len) as u64]));
294                        for values in columns.iter().map(|&column| match column.column_type() {
295                            Any::Advice => &advice_cosets[column.index()],
296                            Any::Fixed => &fixed_cosets[column.index()],
297                            Any::Instance => &instance_cosets[column.index()],
298                        }) {
299                            right *= poly::Ast::from(*values)
300                                + poly::Ast::LinearTerm(current_delta)
301                                + poly::Ast::ConstantTerm(*gamma);
302                            current_delta *= &C::Scalar::DELTA;
303                        }
304
305                        (left - right) * (poly::Ast::one() - (poly::Ast::from(l_last) + l_blind))
306                    }),
307            );
308
309        (constructed, expressions)
310    }
311}
312
313impl<C: CurveAffine> super::ProvingKey<C> {
314    pub(in crate::plonk) fn open(
315        &self,
316        x: ChallengeX<C>,
317    ) -> impl Iterator<Item = ProverQuery<'_, C>> + Clone {
318        self.polys.iter().map(move |poly| ProverQuery {
319            point: *x,
320            poly,
321            blind: Blind::default(),
322        })
323    }
324
325    pub(in crate::plonk) fn evaluate<E: EncodedChallenge<C>, T: TranscriptWrite<C, E>>(
326        &self,
327        x: ChallengeX<C>,
328        transcript: &mut T,
329    ) -> Result<(), Error> {
330        // Hash permutation evals
331        for eval in self.polys.iter().map(|poly| eval_polynomial(poly, *x)) {
332            transcript.write_scalar(eval)?;
333        }
334
335        Ok(())
336    }
337}
338
339impl<C: CurveAffine> Constructed<C> {
340    pub(in crate::plonk) fn evaluate<E: EncodedChallenge<C>, T: TranscriptWrite<C, E>>(
341        self,
342        pk: &plonk::ProvingKey<C>,
343        x: ChallengeX<C>,
344        transcript: &mut T,
345    ) -> Result<Evaluated<C>, Error> {
346        let domain = &pk.vk.domain;
347        let blinding_factors = pk.vk.cs.blinding_factors();
348
349        {
350            let mut sets = self.sets.iter();
351
352            while let Some(set) = sets.next() {
353                let permutation_product_eval = eval_polynomial(&set.permutation_product_poly, *x);
354
355                let permutation_product_next_eval = eval_polynomial(
356                    &set.permutation_product_poly,
357                    domain.rotate_omega(*x, Rotation::next()),
358                );
359
360                // Hash permutation product evals
361                for eval in iter::empty()
362                    .chain(Some(&permutation_product_eval))
363                    .chain(Some(&permutation_product_next_eval))
364                {
365                    transcript.write_scalar(*eval)?;
366                }
367
368                // If we have any remaining sets to process, evaluate this set at omega^u
369                // so we can constrain the last value of its running product to equal the
370                // first value of the next set's running product, chaining them together.
371                if sets.len() > 0 {
372                    let permutation_product_last_eval = eval_polynomial(
373                        &set.permutation_product_poly,
374                        domain.rotate_omega(*x, Rotation(-((blinding_factors + 1) as i32))),
375                    );
376
377                    transcript.write_scalar(permutation_product_last_eval)?;
378                }
379            }
380        }
381
382        Ok(Evaluated { constructed: self })
383    }
384}
385
386impl<C: CurveAffine> Evaluated<C> {
387    pub(in crate::plonk) fn open<'a>(
388        &'a self,
389        pk: &'a plonk::ProvingKey<C>,
390        x: ChallengeX<C>,
391    ) -> impl Iterator<Item = ProverQuery<'a, C>> + Clone {
392        let blinding_factors = pk.vk.cs.blinding_factors();
393        let x_next = pk.vk.domain.rotate_omega(*x, Rotation::next());
394        let x_last = pk
395            .vk
396            .domain
397            .rotate_omega(*x, Rotation(-((blinding_factors + 1) as i32)));
398
399        iter::empty()
400            .chain(self.constructed.sets.iter().flat_map(move |set| {
401                iter::empty()
402                    // Open permutation product commitments at x and \omega x
403                    .chain(Some(ProverQuery {
404                        point: *x,
405                        poly: &set.permutation_product_poly,
406                        blind: set.permutation_product_blind,
407                    }))
408                    .chain(Some(ProverQuery {
409                        point: x_next,
410                        poly: &set.permutation_product_poly,
411                        blind: set.permutation_product_blind,
412                    }))
413            }))
414            // Open it at \omega^{last} x for all but the last set. This rotation is only
415            // sensical for the first row, but we only use this rotation in a constraint
416            // that is gated on l_0.
417            .chain(
418                self.constructed
419                    .sets
420                    .iter()
421                    .rev()
422                    .skip(1)
423                    .flat_map(move |set| {
424                        Some(ProverQuery {
425                            point: x_last,
426                            poly: &set.permutation_product_poly,
427                            blind: set.permutation_product_blind,
428                        })
429                    }),
430            )
431    }
432}