halo2_axiom/plonk/permutation/
keygen.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
use ff::{Field, PrimeField};
use group::Curve;

use super::{Argument, ProvingKey, VerifyingKey};
use crate::{
    arithmetic::{parallelize, CurveAffine},
    plonk::{Any, Column, Error},
    poly::{
        commitment::{Blind, Params},
        EvaluationDomain,
    },
};

#[cfg(feature = "multicore")]
use crate::multicore::{IndexedParallelIterator, ParallelIterator};

#[cfg(feature = "thread-safe-region")]
use std::collections::{BTreeSet, HashMap};

#[cfg(not(feature = "thread-safe-region"))]
/// Struct that accumulates all the necessary data in order to construct the permutation argument.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Assembly {
    /// Columns that participate on the copy permutation argument.
    columns: Vec<Column<Any>>,
    /// Mapping of the actual copies done.
    mapping: Vec<Vec<(usize, usize)>>,
    /// Some aux data used to swap positions directly when sorting.
    aux: Vec<Vec<(usize, usize)>>,
    /// More aux data
    sizes: Vec<Vec<usize>>,
}

#[cfg(not(feature = "thread-safe-region"))]
impl Assembly {
    pub(crate) fn new(n: usize, p: &Argument) -> Self {
        // Initialize the copy vector to keep track of copy constraints in all
        // the permutation arguments.
        let mut columns = vec![];
        for i in 0..p.columns.len() {
            // Computes [(i, 0), (i, 1), ..., (i, n - 1)]
            columns.push((0..n).map(|j| (i, j)).collect());
        }

        // Before any equality constraints are applied, every cell in the permutation is
        // in a 1-cycle; therefore mapping and aux are identical, because every cell is
        // its own distinguished element.
        Assembly {
            columns: p.columns.clone(),
            mapping: columns.clone(),
            aux: columns,
            sizes: vec![vec![1usize; n]; p.columns.len()],
        }
    }

    pub(crate) fn copy(
        &mut self,
        left_column: Column<Any>,
        left_row: usize,
        right_column: Column<Any>,
        right_row: usize,
    ) -> Result<(), Error> {
        let left_column = self
            .columns
            .iter()
            .position(|c| c == &left_column)
            .ok_or(Error::ColumnNotInPermutation(left_column))?;
        let right_column = self
            .columns
            .iter()
            .position(|c| c == &right_column)
            .ok_or(Error::ColumnNotInPermutation(right_column))?;

        // Check bounds
        if left_row >= self.mapping[left_column].len()
            || right_row >= self.mapping[right_column].len()
        {
            return Err(Error::BoundsFailure);
        }

        // See book/src/design/permutation.md for a description of this algorithm.

        let mut left_cycle = self.aux[left_column][left_row];
        let mut right_cycle = self.aux[right_column][right_row];

        // If left and right are in the same cycle, do nothing.
        if left_cycle == right_cycle {
            return Ok(());
        }

        if self.sizes[left_cycle.0][left_cycle.1] < self.sizes[right_cycle.0][right_cycle.1] {
            std::mem::swap(&mut left_cycle, &mut right_cycle);
        }

        // Merge the right cycle into the left one.
        self.sizes[left_cycle.0][left_cycle.1] += self.sizes[right_cycle.0][right_cycle.1];
        let mut i = right_cycle;
        loop {
            self.aux[i.0][i.1] = left_cycle;
            i = self.mapping[i.0][i.1];
            if i == right_cycle {
                break;
            }
        }

        let tmp = self.mapping[left_column][left_row];
        self.mapping[left_column][left_row] = self.mapping[right_column][right_row];
        self.mapping[right_column][right_row] = tmp;

        Ok(())
    }

    pub(crate) fn build_vk<'params, C: CurveAffine, P: Params<'params, C>>(
        self,
        params: &P,
        domain: &EvaluationDomain<C::Scalar>,
        p: &Argument,
    ) -> VerifyingKey<C> {
        build_vk(params, domain, p, |i, j| self.mapping[i][j])
    }

    pub(crate) fn build_pk<'params, C: CurveAffine, P: Params<'params, C>>(
        self,
        params: &P,
        domain: &EvaluationDomain<C::Scalar>,
        p: &Argument,
    ) -> ProvingKey<C> {
        build_pk(params, domain, p, |i, j| self.mapping[i][j])
    }

    /// Returns columns that participate in the permutation argument.
    pub fn columns(&self) -> &[Column<Any>] {
        &self.columns
    }

    #[cfg(feature = "multicore")]
    /// Returns mappings of the copies.
    pub fn mapping(
        &self,
    ) -> impl Iterator<Item = impl IndexedParallelIterator<Item = (usize, usize)> + '_> {
        use crate::multicore::IntoParallelRefIterator;

        self.mapping.iter().map(|c| c.par_iter().copied())
    }

    #[cfg(not(feature = "multicore"))]
    /// Returns mappings of the copies.
    pub fn mapping(&self) -> impl Iterator<Item = impl Iterator<Item = (usize, usize)> + '_> {
        self.mapping.iter().map(|c| c.iter().copied())
    }
}

#[cfg(feature = "thread-safe-region")]
/// Struct that accumulates all the necessary data in order to construct the permutation argument.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Assembly {
    /// Columns that participate on the copy permutation argument.
    columns: Vec<Column<Any>>,
    /// Mapping of the actual copies done.
    cycles: Vec<Vec<(usize, usize)>>,
    /// Mapping of the actual copies done.
    ordered_cycles: Vec<BTreeSet<(usize, usize)>>,
    /// Mapping of the actual copies done.
    aux: HashMap<(usize, usize), usize>,
    /// total length of a column
    col_len: usize,
    /// number of columns
    num_cols: usize,
}

#[cfg(feature = "thread-safe-region")]
impl Assembly {
    pub(crate) fn new(n: usize, p: &Argument) -> Self {
        Assembly {
            columns: p.columns.clone(),
            cycles: Vec::with_capacity(n),
            ordered_cycles: Vec::with_capacity(n),
            aux: HashMap::new(),
            col_len: n,
            num_cols: p.columns.len(),
        }
    }

    pub(crate) fn copy(
        &mut self,
        left_column: Column<Any>,
        left_row: usize,
        right_column: Column<Any>,
        right_row: usize,
    ) -> Result<(), Error> {
        let left_column = self
            .columns
            .iter()
            .position(|c| c == &left_column)
            .ok_or(Error::ColumnNotInPermutation(left_column))?;
        let right_column = self
            .columns
            .iter()
            .position(|c| c == &right_column)
            .ok_or(Error::ColumnNotInPermutation(right_column))?;

        // Check bounds
        if left_row >= self.col_len || right_row >= self.col_len {
            return Err(Error::BoundsFailure);
        }

        let left_cycle = self.aux.get(&(left_column, left_row));
        let right_cycle = self.aux.get(&(right_column, right_row));

        // extract cycle elements
        let right_cycle_elems = match right_cycle {
            Some(i) => {
                let entry = self.cycles[*i].clone();
                self.cycles[*i] = vec![];
                entry
            }
            None => [(right_column, right_row)].into(),
        };

        assert!(right_cycle_elems.contains(&(right_column, right_row)));

        // merge cycles
        let cycle_idx = match left_cycle {
            Some(i) => {
                let entry = &mut self.cycles[*i];
                entry.extend(right_cycle_elems.clone());
                *i
            }
            // if they were singletons -- create a new cycle entry
            None => {
                let mut set: Vec<(usize, usize)> = right_cycle_elems.clone();
                set.push((left_column, left_row));
                self.cycles.push(set);
                let cycle_idx = self.cycles.len() - 1;
                self.aux.insert((left_column, left_row), cycle_idx);
                cycle_idx
            }
        };

        let index_updates = vec![cycle_idx; right_cycle_elems.len()].into_iter();
        let updates = right_cycle_elems.into_iter().zip(index_updates);

        self.aux.extend(updates);

        Ok(())
    }

    /// Builds the ordered mapping of the cycles.
    /// This will only get executed once.
    pub fn build_ordered_mapping(&mut self) {
        use crate::multicore::IntoParallelRefMutIterator;

        // will only get called once
        if self.ordered_cycles.is_empty() && !self.cycles.is_empty() {
            self.ordered_cycles = self
                .cycles
                .par_iter_mut()
                .map(|col| {
                    let mut set = BTreeSet::new();
                    set.extend(col.clone());
                    // free up memory
                    *col = vec![];
                    set
                })
                .collect();
        }
    }

    fn mapping_at_idx(&self, col: usize, row: usize) -> (usize, usize) {
        assert!(
            !self.ordered_cycles.is_empty() || self.cycles.is_empty(),
            "cycles have not been ordered"
        );

        if let Some(cycle_idx) = self.aux.get(&(col, row)) {
            let cycle = &self.ordered_cycles[*cycle_idx];
            let mut cycle_iter = cycle.range((
                std::ops::Bound::Excluded((col, row)),
                std::ops::Bound::Unbounded,
            ));
            // point to the next node in the cycle
            match cycle_iter.next() {
                Some((i, j)) => (*i, *j),
                // wrap back around to the first element which SHOULD exist
                None => *(cycle.iter().next().unwrap()),
            }
        // is a singleton
        } else {
            (col, row)
        }
    }

    pub(crate) fn build_vk<'params, C: CurveAffine, P: Params<'params, C>>(
        &mut self,
        params: &P,
        domain: &EvaluationDomain<C::Scalar>,
        p: &Argument,
    ) -> VerifyingKey<C> {
        self.build_ordered_mapping();
        build_vk(params, domain, p, |i, j| self.mapping_at_idx(i, j))
    }

    pub(crate) fn build_pk<'params, C: CurveAffine, P: Params<'params, C>>(
        &mut self,
        params: &P,
        domain: &EvaluationDomain<C::Scalar>,
        p: &Argument,
    ) -> ProvingKey<C> {
        self.build_ordered_mapping();
        build_pk(params, domain, p, |i, j| self.mapping_at_idx(i, j))
    }

    /// Returns columns that participate in the permutation argument.
    pub fn columns(&self) -> &[Column<Any>] {
        &self.columns
    }

    #[cfg(feature = "multicore")]
    /// Returns mappings of the copies.
    pub fn mapping(
        &self,
    ) -> impl Iterator<Item = impl IndexedParallelIterator<Item = (usize, usize)> + '_> {
        use crate::multicore::IntoParallelIterator;

        (0..self.num_cols).map(move |i| {
            (0..self.col_len)
                .into_par_iter()
                .map(move |j| self.mapping_at_idx(i, j))
        })
    }

    #[cfg(not(feature = "multicore"))]
    /// Returns mappings of the copies.
    pub fn mapping(&self) -> impl Iterator<Item = impl Iterator<Item = (usize, usize)> + '_> {
        (0..self.num_cols).map(move |i| (0..self.col_len).map(move |j| self.mapping_at_idx(i, j)))
    }
}

pub(crate) fn build_pk<'params, C: CurveAffine, P: Params<'params, C>>(
    params: &P,
    domain: &EvaluationDomain<C::Scalar>,
    p: &Argument,
    mapping: impl Fn(usize, usize) -> (usize, usize) + Sync,
) -> ProvingKey<C> {
    // Compute [omega^0, omega^1, ..., omega^{params.n - 1}]
    let mut omega_powers = vec![C::Scalar::ZERO; params.n() as usize];
    {
        let omega = domain.get_omega();
        parallelize(&mut omega_powers, |o, start| {
            let mut cur = omega.pow_vartime([start as u64]);
            for v in o.iter_mut() {
                *v = cur;
                cur *= &omega;
            }
        })
    }

    // Compute [omega_powers * \delta^0, omega_powers * \delta^1, ..., omega_powers * \delta^m]
    let mut deltaomega = vec![omega_powers; p.columns.len()];
    {
        parallelize(&mut deltaomega, |o, start| {
            let mut cur = C::Scalar::DELTA.pow_vartime([start as u64]);
            for omega_powers in o.iter_mut() {
                for v in omega_powers {
                    *v *= &cur;
                }
                cur *= &C::Scalar::DELTA;
            }
        });
    }

    // Compute permutation polynomials, convert to coset form.
    let mut permutations = vec![domain.empty_lagrange(); p.columns.len()];
    {
        parallelize(&mut permutations, |o, start| {
            for (x, permutation_poly) in o.iter_mut().enumerate() {
                let i = start + x;
                for (j, p) in permutation_poly.iter_mut().enumerate() {
                    let (permuted_i, permuted_j) = mapping(i, j);
                    *p = deltaomega[permuted_i][permuted_j];
                }
            }
        });
    }

    let mut polys = vec![domain.empty_coeff(); p.columns.len()];
    {
        parallelize(&mut polys, |o, start| {
            for (x, poly) in o.iter_mut().enumerate() {
                let i = start + x;
                let permutation_poly = permutations[i].clone();
                *poly = domain.lagrange_to_coeff(permutation_poly);
            }
        });
    }

    ProvingKey {
        permutations,
        polys,
    }
}

pub(crate) fn build_vk<'params, C: CurveAffine, P: Params<'params, C>>(
    params: &P,
    domain: &EvaluationDomain<C::Scalar>,
    p: &Argument,
    mapping: impl Fn(usize, usize) -> (usize, usize) + Sync,
) -> VerifyingKey<C> {
    // Compute [omega^0, omega^1, ..., omega^{params.n - 1}]
    let mut omega_powers = vec![C::Scalar::ZERO; params.n() as usize];
    {
        let omega = domain.get_omega();
        parallelize(&mut omega_powers, |o, start| {
            let mut cur = omega.pow_vartime([start as u64]);
            for v in o.iter_mut() {
                *v = cur;
                cur *= &omega;
            }
        })
    }

    // Compute [omega_powers * \delta^0, omega_powers * \delta^1, ..., omega_powers * \delta^m]
    let mut deltaomega = vec![omega_powers; p.columns.len()];
    {
        parallelize(&mut deltaomega, |o, start| {
            let mut cur = C::Scalar::DELTA.pow_vartime([start as u64]);
            for omega_powers in o.iter_mut() {
                for v in omega_powers {
                    *v *= &cur;
                }
                cur *= &<C::Scalar as PrimeField>::DELTA;
            }
        });
    }

    // Computes the permutation polynomial based on the permutation
    // description in the assembly.
    let mut permutations = vec![domain.empty_lagrange(); p.columns.len()];
    {
        parallelize(&mut permutations, |o, start| {
            for (x, permutation_poly) in o.iter_mut().enumerate() {
                let i = start + x;
                for (j, p) in permutation_poly.iter_mut().enumerate() {
                    let (permuted_i, permuted_j) = mapping(i, j);
                    *p = deltaomega[permuted_i][permuted_j];
                }
            }
        });
    }

    // Pre-compute commitments for the URS.
    let mut commitments = Vec::with_capacity(p.columns.len());
    for permutation in &permutations {
        // Compute commitment to permutation polynomial
        commitments.push(
            params
                .commit_lagrange(permutation, Blind::default())
                .to_affine(),
        );
    }

    VerifyingKey { commitments }
}