halo2curves_axiom/secp256k1/
fq.rs
1use crate::arithmetic::{adc, bigint_geq, mac, macx, sbb};
2use crate::extend_field_legendre;
3use crate::ff::{FromUniformBytes, PrimeField, WithSmallOrderMulGroup};
4use crate::{
5 field_arithmetic, field_bits, field_common, field_specific, impl_add_binop_specify_output,
6 impl_binops_additive, impl_binops_additive_specify_output, impl_binops_multiplicative,
7 impl_binops_multiplicative_mixed, impl_from_u64, impl_sub_binop_specify_output, impl_sum_prod,
8};
9use core::convert::TryInto;
10use core::fmt;
11use core::ops::{Add, Mul, Neg, Sub};
12use rand::RngCore;
13use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
14
15#[derive(Clone, Copy, PartialEq, Eq, Hash)]
24pub struct Fq(pub(crate) [u64; 4]);
25
26#[cfg(feature = "derive_serde")]
27crate::serialize_deserialize_32_byte_primefield!(Fq);
28
29const MODULUS: Fq = Fq([
32 0xbfd25e8cd0364141,
33 0xbaaedce6af48a03b,
34 0xfffffffffffffffe,
35 0xffffffffffffffff,
36]);
37
38#[cfg(not(target_pointer_width = "64"))]
40const MODULUS_LIMBS_32: [u32; 8] = [
41 0xd036_4141,
42 0xbfd2_5e8c,
43 0xaf48_a03b,
44 0xbaae_dce6,
45 0xffff_fffe,
46 0xffff_ffff,
47 0xffff_ffff,
48 0xffff_ffff,
49];
50
51const MODULUS_STR: &str = "0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141";
53
54const INV: u64 = 0x4b0dff665588b13f;
56
57const R: Fq = Fq([0x402da1732fc9bebf, 0x4551231950b75fc4, 0x1, 0]);
60
61const R2: Fq = Fq([
64 0x896cf21467d7d140,
65 0x741496c20e7cf878,
66 0xe697f5e45bcd07c6,
67 0x9d671cd581c69bc5,
68]);
69
70const R3: Fq = Fq([
73 0x7bc0cfe0e9ff41ed,
74 0x0017648444d4322c,
75 0xb1b31347f1d0b2da,
76 0x555d800c18ef116d,
77]);
78
79const GENERATOR: Fq = Fq::from_raw([0x07, 0x00, 0x00, 0x00]);
83
84const ROOT_OF_UNITY: Fq = Fq::from_raw([
87 0x992f4b5402b052f2,
88 0x98bdeab680756045,
89 0xdf9879a3fbc483a8,
90 0xc1dc060e7a91986,
91]);
92
93const ROOT_OF_UNITY_INV: Fq = Fq::from_raw([
95 0xb6fb30a0884f0d1c,
96 0x77a275910aa413c3,
97 0xefc7b0c75b8cbb72,
98 0xfd3ae181f12d7096,
99]);
100
101const TWO_INV: Fq = Fq::from_raw([
103 0xdfe92f46681b20a1,
104 0x5d576e7357a4501d,
105 0xffffffffffffffff,
106 0x7fffffffffffffff,
107]);
108
109const ZETA: Fq = Fq::from_raw([
110 0xdf02967c1b23bd72,
111 0x122e22ea20816678,
112 0xa5261c028812645a,
113 0x5363ad4cc05c30e0,
114]);
115
116const DELTA: Fq = Fq([
120 0xd91b33d24319d9e8,
121 0xb81c6596ff5d6740,
122 0xa463969ca14c51c1,
123 0x1900960de4b7929c,
124]);
125
126impl_binops_additive!(Fq, Fq);
127impl_binops_multiplicative!(Fq, Fq);
128field_common!(
129 Fq,
130 MODULUS,
131 INV,
132 MODULUS_STR,
133 TWO_INV,
134 ROOT_OF_UNITY_INV,
135 DELTA,
136 ZETA,
137 R,
138 R2,
139 R3
140);
141impl_from_u64!(Fq, R2);
142field_arithmetic!(Fq, MODULUS, INV, dense);
143impl_sum_prod!(Fq);
144
145#[cfg(target_pointer_width = "64")]
146field_bits!(Fq, MODULUS);
147#[cfg(not(target_pointer_width = "64"))]
148field_bits!(Fq, MODULUS, MODULUS_LIMBS_32);
149
150impl Fq {
151 pub const fn size() -> usize {
152 32
153 }
154}
155
156impl ff::Field for Fq {
157 const ZERO: Self = Self::zero();
158 const ONE: Self = Self::one();
159
160 fn random(mut rng: impl RngCore) -> Self {
161 Self::from_u512([
162 rng.next_u64(),
163 rng.next_u64(),
164 rng.next_u64(),
165 rng.next_u64(),
166 rng.next_u64(),
167 rng.next_u64(),
168 rng.next_u64(),
169 rng.next_u64(),
170 ])
171 }
172
173 fn double(&self) -> Self {
174 self.double()
175 }
176
177 #[inline(always)]
178 fn square(&self) -> Self {
179 self.square()
180 }
181
182 fn invert(&self) -> CtOption<Self> {
185 self.invert()
186 }
187
188 fn pow_vartime<S: AsRef<[u64]>>(&self, exp: S) -> Self {
189 let mut res = Self::one();
190 let mut found_one = false;
191 for e in exp.as_ref().iter().rev() {
192 for i in (0..64).rev() {
193 if found_one {
194 res = res.square();
195 }
196
197 if ((*e >> i) & 1) == 1 {
198 found_one = true;
199 res *= self;
200 }
201 }
202 }
203 res
204 }
205
206 fn sqrt(&self) -> CtOption<Self> {
207 let tm1d2 = [
208 0x777fa4bd19a06c82,
209 0xfd755db9cd5e9140,
210 0xffffffffffffffff,
211 0x01ffffffffffffff,
212 ];
213
214 ff::helpers::sqrt_tonelli_shanks(self, tm1d2)
215 }
216
217 fn sqrt_ratio(num: &Self, div: &Self) -> (Choice, Self) {
218 ff::helpers::sqrt_ratio_generic(num, div)
219 }
220}
221
222impl ff::PrimeField for Fq {
223 type Repr = [u8; 32];
224
225 const NUM_BITS: u32 = 256;
226 const CAPACITY: u32 = 255;
227 const MODULUS: &'static str = MODULUS_STR;
228 const MULTIPLICATIVE_GENERATOR: Self = GENERATOR;
229 const ROOT_OF_UNITY: Self = ROOT_OF_UNITY;
230 const ROOT_OF_UNITY_INV: Self = ROOT_OF_UNITY_INV;
231 const TWO_INV: Self = TWO_INV;
232 const DELTA: Self = DELTA;
233 const S: u32 = 6;
234
235 fn from_repr(repr: Self::Repr) -> CtOption<Self> {
236 let mut tmp = Fq([0, 0, 0, 0]);
237
238 tmp.0[0] = u64::from_le_bytes(repr[0..8].try_into().unwrap());
239 tmp.0[1] = u64::from_le_bytes(repr[8..16].try_into().unwrap());
240 tmp.0[2] = u64::from_le_bytes(repr[16..24].try_into().unwrap());
241 tmp.0[3] = u64::from_le_bytes(repr[24..32].try_into().unwrap());
242
243 let (_, borrow) = sbb(tmp.0[0], MODULUS.0[0], 0);
245 let (_, borrow) = sbb(tmp.0[1], MODULUS.0[1], borrow);
246 let (_, borrow) = sbb(tmp.0[2], MODULUS.0[2], borrow);
247 let (_, borrow) = sbb(tmp.0[3], MODULUS.0[3], borrow);
248
249 let is_some = (borrow as u8) & 1;
253
254 tmp *= &R2;
257
258 CtOption::new(tmp, Choice::from(is_some))
259 }
260
261 fn to_repr(&self) -> Self::Repr {
262 let tmp: [u64; 4] = (*self).into();
263 let mut res = [0; 32];
264 res[0..8].copy_from_slice(&tmp[0].to_le_bytes());
265 res[8..16].copy_from_slice(&tmp[1].to_le_bytes());
266 res[16..24].copy_from_slice(&tmp[2].to_le_bytes());
267 res[24..32].copy_from_slice(&tmp[3].to_le_bytes());
268
269 res
270 }
271
272 fn is_odd(&self) -> Choice {
273 Choice::from(self.to_repr()[0] & 1)
274 }
275}
276
277impl FromUniformBytes<64> for Fq {
278 fn from_uniform_bytes(bytes: &[u8; 64]) -> Self {
281 Self::from_u512([
282 u64::from_le_bytes(bytes[0..8].try_into().unwrap()),
283 u64::from_le_bytes(bytes[8..16].try_into().unwrap()),
284 u64::from_le_bytes(bytes[16..24].try_into().unwrap()),
285 u64::from_le_bytes(bytes[24..32].try_into().unwrap()),
286 u64::from_le_bytes(bytes[32..40].try_into().unwrap()),
287 u64::from_le_bytes(bytes[40..48].try_into().unwrap()),
288 u64::from_le_bytes(bytes[48..56].try_into().unwrap()),
289 u64::from_le_bytes(bytes[56..64].try_into().unwrap()),
290 ])
291 }
292}
293
294impl WithSmallOrderMulGroup<3> for Fq {
295 const ZETA: Self = ZETA;
296}
297
298extend_field_legendre!(Fq);
299
300#[cfg(test)]
301mod test {
302 use super::*;
303 use ff::Field;
304 use rand_core::OsRng;
305
306 #[test]
307 fn test_sqrt() {
308 let v = (Fq::TWO_INV).square().sqrt().unwrap();
310 assert!(v == Fq::TWO_INV || (-v) == Fq::TWO_INV);
311
312 for _ in 0..10000 {
313 let a = Fq::random(OsRng);
314 let mut b = a;
315 b = b.square();
316
317 let b = b.sqrt().unwrap();
318 let mut negb = b;
319 negb = negb.neg();
320
321 assert!(a == b || a == negb);
322 }
323 }
324
325 #[test]
326 fn test_constants() {
327 assert_eq!(
328 Fq::MODULUS,
329 "0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141",
330 );
331
332 assert_eq!(Fq::from(2) * Fq::TWO_INV, Fq::ONE);
333 }
334
335 #[test]
336 fn test_delta() {
337 assert_eq!(Fq::DELTA, Fq::MULTIPLICATIVE_GENERATOR.pow([1u64 << Fq::S]));
338 }
339
340 #[test]
341 fn test_root_of_unity() {
342 assert_eq!(Fq::ROOT_OF_UNITY.pow_vartime([1 << Fq::S]), Fq::one());
343 }
344
345 #[test]
346 fn test_inv_root_of_unity() {
347 assert_eq!(Fq::ROOT_OF_UNITY_INV, Fq::ROOT_OF_UNITY.invert().unwrap());
348 }
349
350 #[test]
351 fn test_field() {
352 crate::tests::field::random_field_tests::<Fq>("secp256k1 scalar".to_string());
353 }
354
355 #[test]
356 fn test_conversion() {
357 crate::tests::field::random_conversion_tests::<Fq>("secp256k1 scalar".to_string());
358 }
359
360 #[test]
361 #[cfg(feature = "bits")]
362 fn test_bits() {
363 crate::tests::field::random_bits_tests::<Fq>("secp256k1 scalar".to_string());
364 }
365
366 #[test]
367 fn test_serialization() {
368 crate::tests::field::random_serialization_test::<Fq>("secp256k1 scalar".to_string());
369 #[cfg(feature = "derive_serde")]
370 crate::tests::field::random_serde_test::<Fq>("secp256k1 scalar".to_string());
371 }
372 #[test]
373 fn test_quadratic_residue() {
374 crate::tests::field::random_quadratic_residue_test::<Fq>();
375 }
376}