ecdsa/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
#![no_std]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/8f1a9894/logo.svg",
    html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/8f1a9894/logo.svg"
)]
#![forbid(unsafe_code)]
#![warn(
    clippy::cast_lossless,
    clippy::cast_possible_truncation,
    clippy::cast_possible_wrap,
    clippy::cast_precision_loss,
    clippy::cast_sign_loss,
    clippy::checked_conversions,
    clippy::implicit_saturating_sub,
    clippy::panic,
    clippy::panic_in_result_fn,
    clippy::unwrap_used,
    missing_docs,
    rust_2018_idioms,
    unused_lifetimes,
    unused_qualifications
)]

//! ## `serde` support
//!
//! When the `serde` feature of this crate is enabled, `Serialize` and
//! `Deserialize` impls are provided for the [`Signature`] and [`VerifyingKey`]
//! types.
//!
//! Please see type-specific documentation for more information.
//!
//! ## Interop
//!
//! Any crates which provide an implementation of ECDSA for a particular
//! elliptic curve can leverage the types from this crate, along with the
//! [`k256`], [`p256`], and/or [`p384`] crates to expose ECDSA functionality in
//! a generic, interoperable way by leveraging the [`Signature`] type with in
//! conjunction with the [`signature::Signer`] and [`signature::Verifier`]
//! traits.
//!
//! For example, the [`ring-compat`] crate implements the [`signature::Signer`]
//! and [`signature::Verifier`] traits in conjunction with the
//! [`p256::ecdsa::Signature`] and [`p384::ecdsa::Signature`] types to
//! wrap the ECDSA implementations from [*ring*] in a generic, interoperable
//! API.
//!
//! [`k256`]: https://docs.rs/k256
//! [`p256`]: https://docs.rs/p256
//! [`p256::ecdsa::Signature`]: https://docs.rs/p256/latest/p256/ecdsa/type.Signature.html
//! [`p384`]: https://docs.rs/p384
//! [`p384::ecdsa::Signature`]: https://docs.rs/p384/latest/p384/ecdsa/type.Signature.html
//! [`ring-compat`]: https://docs.rs/ring-compat
//! [*ring*]: https://docs.rs/ring

#[cfg(feature = "alloc")]
extern crate alloc;

mod normalized;
mod recovery;

#[cfg(feature = "der")]
pub mod der;
#[cfg(feature = "dev")]
pub mod dev;
#[cfg(feature = "hazmat")]
pub mod hazmat;
#[cfg(feature = "signing")]
mod signing;
#[cfg(feature = "verifying")]
mod verifying;

pub use crate::{normalized::NormalizedSignature, recovery::RecoveryId};

// Re-export the `elliptic-curve` crate (and select types)
pub use elliptic_curve::{self, sec1::EncodedPoint, PrimeCurve};

// Re-export the `signature` crate (and select types)
pub use signature::{self, Error, Result, SignatureEncoding};

#[cfg(feature = "signing")]
pub use crate::signing::SigningKey;
#[cfg(feature = "verifying")]
pub use crate::verifying::VerifyingKey;

use core::{fmt, ops::Add};
use elliptic_curve::{
    generic_array::{typenum::Unsigned, ArrayLength, GenericArray},
    FieldBytes, FieldBytesSize, ScalarPrimitive,
};

#[cfg(feature = "alloc")]
use alloc::vec::Vec;

#[cfg(feature = "arithmetic")]
use {
    core::str,
    elliptic_curve::{scalar::IsHigh, CurveArithmetic, NonZeroScalar},
};

#[cfg(feature = "digest")]
use digest::{
    const_oid::{AssociatedOid, ObjectIdentifier},
    Digest,
};

#[cfg(feature = "pkcs8")]
use elliptic_curve::pkcs8::spki::{
    der::AnyRef, AlgorithmIdentifierRef, AssociatedAlgorithmIdentifier,
};

#[cfg(feature = "serde")]
use serdect::serde::{de, ser, Deserialize, Serialize};

#[cfg(all(feature = "alloc", feature = "pkcs8"))]
use elliptic_curve::pkcs8::spki::{
    self, AlgorithmIdentifierOwned, DynAssociatedAlgorithmIdentifier,
};

/// OID for ECDSA with SHA-224 digests.
///
/// ```text
/// ecdsa-with-SHA224 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
///      us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 1 }
/// ```
// TODO(tarcieri): use `ObjectIdentifier::push_arc` when const unwrap is stable
#[cfg(feature = "digest")]
pub const ECDSA_SHA224_OID: ObjectIdentifier = ObjectIdentifier::new_unwrap("1.2.840.10045.4.3.1");

/// OID for ECDSA with SHA-256 digests.
///
/// ```text
/// ecdsa-with-SHA256 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
///      us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 2 }
/// ```
#[cfg(feature = "digest")]
pub const ECDSA_SHA256_OID: ObjectIdentifier = ObjectIdentifier::new_unwrap("1.2.840.10045.4.3.2");

/// OID for ECDSA with SHA-384 digests.
///
/// ```text
/// ecdsa-with-SHA384 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
///      us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 3 }
/// ```
#[cfg(feature = "digest")]
pub const ECDSA_SHA384_OID: ObjectIdentifier = ObjectIdentifier::new_unwrap("1.2.840.10045.4.3.3");

/// OID for ECDSA with SHA-512 digests.
///
/// ```text
/// ecdsa-with-SHA512 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
///      us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 4 }
/// ```
#[cfg(feature = "digest")]
pub const ECDSA_SHA512_OID: ObjectIdentifier = ObjectIdentifier::new_unwrap("1.2.840.10045.4.3.4");

#[cfg(feature = "digest")]
const SHA224_OID: ObjectIdentifier = ObjectIdentifier::new_unwrap("2.16.840.1.101.3.4.2.4");
#[cfg(feature = "digest")]
const SHA256_OID: ObjectIdentifier = ObjectIdentifier::new_unwrap("2.16.840.1.101.3.4.2.1");
#[cfg(feature = "digest")]
const SHA384_OID: ObjectIdentifier = ObjectIdentifier::new_unwrap("2.16.840.1.101.3.4.2.2");
#[cfg(feature = "digest")]
const SHA512_OID: ObjectIdentifier = ObjectIdentifier::new_unwrap("2.16.840.1.101.3.4.2.3");

/// Size of a fixed sized signature for the given elliptic curve.
pub type SignatureSize<C> = <FieldBytesSize<C> as Add>::Output;

/// Fixed-size byte array containing an ECDSA signature
pub type SignatureBytes<C> = GenericArray<u8, SignatureSize<C>>;

/// ECDSA signature (fixed-size). Generic over elliptic curve types.
///
/// Serialized as fixed-sized big endian scalar values with no added framing:
///
/// - `r`: field element size for the given curve, big-endian
/// - `s`: field element size for the given curve, big-endian
///
/// Both `r` and `s` MUST be non-zero.
///
/// For example, in a curve with a 256-bit modulus like NIST P-256 or
/// secp256k1, `r` and `s` will both be 32-bytes and serialized as big endian,
/// resulting in a signature with a total of 64-bytes.
///
/// ASN.1 DER-encoded signatures also supported via the
/// [`Signature::from_der`] and [`Signature::to_der`] methods.
///
/// # `serde` support
///
/// When the `serde` feature of this crate is enabled, it provides support for
/// serializing and deserializing ECDSA signatures using the `Serialize` and
/// `Deserialize` traits.
///
/// The serialization uses a hexadecimal encoding when used with
/// "human readable" text formats, and a binary encoding otherwise.
#[derive(Clone, Eq, PartialEq)]
pub struct Signature<C: PrimeCurve> {
    r: ScalarPrimitive<C>,
    s: ScalarPrimitive<C>,
}

impl<C> Signature<C>
where
    C: PrimeCurve,
    SignatureSize<C>: ArrayLength<u8>,
{
    /// Parse a signature from fixed-width bytes, i.e. 2 * the size of
    /// [`FieldBytes`] for a particular curve.
    ///
    /// # Returns
    /// - `Ok(signature)` if the `r` and `s` components are both in the valid
    ///   range `1..n` when serialized as concatenated big endian integers.
    /// - `Err(err)` if the `r` and/or `s` component of the signature is
    ///   out-of-range when interpreted as a big endian integer.
    pub fn from_bytes(bytes: &SignatureBytes<C>) -> Result<Self> {
        let (r_bytes, s_bytes) = bytes.split_at(C::FieldBytesSize::USIZE);
        let r = FieldBytes::<C>::clone_from_slice(r_bytes);
        let s = FieldBytes::<C>::clone_from_slice(s_bytes);
        Self::from_scalars(r, s)
    }

    /// Parse a signature from a byte slice.
    pub fn from_slice(slice: &[u8]) -> Result<Self> {
        if slice.len() == SignatureSize::<C>::USIZE {
            Self::from_bytes(SignatureBytes::<C>::from_slice(slice))
        } else {
            Err(Error::new())
        }
    }

    /// Parse a signature from ASN.1 DER.
    #[cfg(feature = "der")]
    pub fn from_der(bytes: &[u8]) -> Result<Self>
    where
        der::MaxSize<C>: ArrayLength<u8>,
        <FieldBytesSize<C> as Add>::Output: Add<der::MaxOverhead> + ArrayLength<u8>,
    {
        der::Signature::<C>::try_from(bytes).and_then(Self::try_from)
    }

    /// Create a [`Signature`] from the serialized `r` and `s` scalar values
    /// which comprise the signature.
    ///
    /// # Returns
    /// - `Ok(signature)` if the `r` and `s` components are both in the valid
    ///   range `1..n` when serialized as concatenated big endian integers.
    /// - `Err(err)` if the `r` and/or `s` component of the signature is
    ///   out-of-range when interpreted as a big endian integer.
    pub fn from_scalars(r: impl Into<FieldBytes<C>>, s: impl Into<FieldBytes<C>>) -> Result<Self> {
        let r = ScalarPrimitive::from_slice(&r.into()).map_err(|_| Error::new())?;
        let s = ScalarPrimitive::from_slice(&s.into()).map_err(|_| Error::new())?;

        if r.is_zero().into() || s.is_zero().into() {
            return Err(Error::new());
        }

        Ok(Self { r, s })
    }

    /// Split the signature into its `r` and `s` components, represented as bytes.
    pub fn split_bytes(&self) -> (FieldBytes<C>, FieldBytes<C>) {
        (self.r.to_bytes(), self.s.to_bytes())
    }

    /// Serialize this signature as bytes.
    pub fn to_bytes(&self) -> SignatureBytes<C> {
        let mut bytes = SignatureBytes::<C>::default();
        let (r_bytes, s_bytes) = bytes.split_at_mut(C::FieldBytesSize::USIZE);
        r_bytes.copy_from_slice(&self.r.to_bytes());
        s_bytes.copy_from_slice(&self.s.to_bytes());
        bytes
    }

    /// Serialize this signature as ASN.1 DER.
    #[cfg(feature = "der")]
    pub fn to_der(&self) -> der::Signature<C>
    where
        der::MaxSize<C>: ArrayLength<u8>,
        <FieldBytesSize<C> as Add>::Output: Add<der::MaxOverhead> + ArrayLength<u8>,
    {
        let (r, s) = self.split_bytes();
        der::Signature::from_components(&r, &s).expect("DER encoding error")
    }

    /// Convert this signature into a byte vector.
    #[cfg(feature = "alloc")]
    pub fn to_vec(&self) -> Vec<u8> {
        self.to_bytes().to_vec()
    }
}

#[cfg(feature = "arithmetic")]
impl<C> Signature<C>
where
    C: PrimeCurve + CurveArithmetic,
    SignatureSize<C>: ArrayLength<u8>,
{
    /// Get the `r` component of this signature
    pub fn r(&self) -> NonZeroScalar<C> {
        NonZeroScalar::new(self.r.into()).unwrap()
    }

    /// Get the `s` component of this signature
    pub fn s(&self) -> NonZeroScalar<C> {
        NonZeroScalar::new(self.s.into()).unwrap()
    }

    /// Split the signature into its `r` and `s` scalars.
    pub fn split_scalars(&self) -> (NonZeroScalar<C>, NonZeroScalar<C>) {
        (self.r(), self.s())
    }

    /// Normalize signature into "low S" form as described in
    /// [BIP 0062: Dealing with Malleability][1].
    ///
    /// [1]: https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
    pub fn normalize_s(&self) -> Option<Self> {
        let s = self.s();

        if s.is_high().into() {
            let mut result = self.clone();
            result.s = ScalarPrimitive::from(-s);
            Some(result)
        } else {
            None
        }
    }
}

impl<C> Copy for Signature<C>
where
    C: PrimeCurve,
    SignatureSize<C>: ArrayLength<u8>,
    <SignatureSize<C> as ArrayLength<u8>>::ArrayType: Copy,
{
}

impl<C> From<Signature<C>> for SignatureBytes<C>
where
    C: PrimeCurve,
    SignatureSize<C>: ArrayLength<u8>,
{
    fn from(signature: Signature<C>) -> SignatureBytes<C> {
        signature.to_bytes()
    }
}

impl<C> SignatureEncoding for Signature<C>
where
    C: PrimeCurve,
    SignatureSize<C>: ArrayLength<u8>,
{
    type Repr = SignatureBytes<C>;
}

impl<C> TryFrom<&[u8]> for Signature<C>
where
    C: PrimeCurve,
    SignatureSize<C>: ArrayLength<u8>,
{
    type Error = Error;

    fn try_from(slice: &[u8]) -> Result<Self> {
        Self::from_slice(slice)
    }
}

impl<C> fmt::Debug for Signature<C>
where
    C: PrimeCurve,
    SignatureSize<C>: ArrayLength<u8>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "ecdsa::Signature<{:?}>(", C::default())?;

        for byte in self.to_bytes() {
            write!(f, "{:02X}", byte)?;
        }

        write!(f, ")")
    }
}

impl<C> fmt::Display for Signature<C>
where
    C: PrimeCurve,
    SignatureSize<C>: ArrayLength<u8>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{:X}", self)
    }
}

impl<C> fmt::LowerHex for Signature<C>
where
    C: PrimeCurve,
    SignatureSize<C>: ArrayLength<u8>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in self.to_bytes() {
            write!(f, "{:02x}", byte)?;
        }
        Ok(())
    }
}

impl<C> fmt::UpperHex for Signature<C>
where
    C: PrimeCurve,
    SignatureSize<C>: ArrayLength<u8>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in self.to_bytes() {
            write!(f, "{:02X}", byte)?;
        }
        Ok(())
    }
}

#[cfg(feature = "arithmetic")]
impl<C> str::FromStr for Signature<C>
where
    C: PrimeCurve + CurveArithmetic,
    SignatureSize<C>: ArrayLength<u8>,
{
    type Err = Error;

    fn from_str(hex: &str) -> Result<Self> {
        if hex.as_bytes().len() != C::FieldBytesSize::USIZE * 4 {
            return Err(Error::new());
        }

        // This check is mainly to ensure `hex.split_at` below won't panic
        if !hex
            .as_bytes()
            .iter()
            .all(|&byte| matches!(byte, b'0'..=b'9' | b'a'..=b'z' | b'A'..=b'Z'))
        {
            return Err(Error::new());
        }

        let (r_hex, s_hex) = hex.split_at(C::FieldBytesSize::USIZE * 2);

        let r = r_hex
            .parse::<NonZeroScalar<C>>()
            .map_err(|_| Error::new())?;

        let s = s_hex
            .parse::<NonZeroScalar<C>>()
            .map_err(|_| Error::new())?;

        Self::from_scalars(r, s)
    }
}

/// ECDSA [`ObjectIdentifier`] which identifies the digest used by default
/// with the `Signer` and `Verifier` traits.
///
/// To support non-default digest algorithms, use the [`SignatureWithOid`]
/// type instead.
#[cfg(all(feature = "digest", feature = "hazmat"))]
impl<C> AssociatedOid for Signature<C>
where
    C: hazmat::DigestPrimitive,
    C::Digest: AssociatedOid,
{
    const OID: ObjectIdentifier = match ecdsa_oid_for_digest(C::Digest::OID) {
        Some(oid) => oid,
        None => panic!("no RFC5758 ECDSA OID defined for DigestPrimitive::Digest"),
    };
}

/// ECDSA `AlgorithmIdentifier` which identifies the digest used by default
/// with the `Signer` and `Verifier` traits.
#[cfg(feature = "pkcs8")]
impl<C> AssociatedAlgorithmIdentifier for Signature<C>
where
    C: PrimeCurve,
    Self: AssociatedOid,
{
    type Params = AnyRef<'static>;

    const ALGORITHM_IDENTIFIER: AlgorithmIdentifierRef<'static> = AlgorithmIdentifierRef {
        oid: Self::OID,
        parameters: None,
    };
}

#[cfg(feature = "serde")]
impl<C> Serialize for Signature<C>
where
    C: PrimeCurve,
    SignatureSize<C>: ArrayLength<u8>,
{
    fn serialize<S>(&self, serializer: S) -> core::result::Result<S::Ok, S::Error>
    where
        S: ser::Serializer,
    {
        serdect::array::serialize_hex_upper_or_bin(&self.to_bytes(), serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de, C> Deserialize<'de> for Signature<C>
where
    C: PrimeCurve,
    SignatureSize<C>: ArrayLength<u8>,
{
    fn deserialize<D>(deserializer: D) -> core::result::Result<Self, D::Error>
    where
        D: de::Deserializer<'de>,
    {
        let mut bytes = SignatureBytes::<C>::default();
        serdect::array::deserialize_hex_or_bin(&mut bytes, deserializer)?;
        Self::try_from(bytes.as_slice()).map_err(de::Error::custom)
    }
}

/// An extended [`Signature`] type which is parameterized by an
/// `ObjectIdentifier` which identifies the ECDSA variant used by a
/// particular signature.
///
/// Valid `ObjectIdentifiers` are defined in [RFC5758 § 3.2]:
///
/// - SHA-224: [`ECDSA_SHA224_OID`] (1.2.840.10045.4.3.1)
/// - SHA-256: [`ECDSA_SHA256_OID`] (1.2.840.10045.4.3.2)
/// - SHA-384: [`ECDSA_SHA384_OID`] (1.2.840.10045.4.3.3)
/// - SHA-512: [`ECDSA_SHA512_OID`] (1.2.840.10045.4.3.4)
///
/// [RFC5758 § 3.2]: https://www.rfc-editor.org/rfc/rfc5758#section-3.2
#[cfg(feature = "digest")]
#[derive(Clone, Eq, PartialEq)]
pub struct SignatureWithOid<C: PrimeCurve> {
    /// Inner signature type.
    signature: Signature<C>,

    /// OID which identifies the ECDSA variant used.
    ///
    /// MUST be one of the ECDSA algorithm variants as defined in RFC5758.
    ///
    /// These OIDs begin with `1.2.840.10045.4`.
    oid: ObjectIdentifier,
}

#[cfg(feature = "digest")]
impl<C> SignatureWithOid<C>
where
    C: PrimeCurve,
{
    /// Create a new signature with an explicitly provided OID.
    ///
    /// OID must begin with `1.2.840.10045.4`, the [RFC5758] OID prefix for
    /// ECDSA variants.
    ///
    /// [RFC5758]: https://www.rfc-editor.org/rfc/rfc5758#section-3.2
    pub fn new(signature: Signature<C>, oid: ObjectIdentifier) -> Result<Self> {
        // TODO(tarcieri): use `ObjectIdentifier::starts_with`
        for (arc1, arc2) in ObjectIdentifier::new_unwrap("1.2.840.10045.4.3")
            .arcs()
            .zip(oid.arcs())
        {
            if arc1 != arc2 {
                return Err(Error::new());
            }
        }

        Ok(Self { signature, oid })
    }

    /// Create a new signature, determining the OID from the given digest.
    ///
    /// Supports SHA-2 family digests as enumerated in [RFC5758 § 3.2], i.e.
    /// SHA-224, SHA-256, SHA-384, or SHA-512.
    ///
    /// [RFC5758 § 3.2]: https://www.rfc-editor.org/rfc/rfc5758#section-3.2
    pub fn new_with_digest<D>(signature: Signature<C>) -> Result<Self>
    where
        D: AssociatedOid + Digest,
    {
        let oid = ecdsa_oid_for_digest(D::OID).ok_or_else(Error::new)?;
        Ok(Self { signature, oid })
    }

    /// Parse a signature from fixed-with bytes.
    pub fn from_bytes_with_digest<D>(bytes: &SignatureBytes<C>) -> Result<Self>
    where
        D: AssociatedOid + Digest,
        SignatureSize<C>: ArrayLength<u8>,
    {
        Self::new_with_digest::<D>(Signature::<C>::from_bytes(bytes)?)
    }

    /// Parse a signature from a byte slice.
    pub fn from_slice_with_digest<D>(slice: &[u8]) -> Result<Self>
    where
        D: AssociatedOid + Digest,
        SignatureSize<C>: ArrayLength<u8>,
    {
        Self::new_with_digest::<D>(Signature::<C>::from_slice(slice)?)
    }

    /// Get the fixed-width ECDSA signature.
    pub fn signature(&self) -> &Signature<C> {
        &self.signature
    }

    /// Get the ECDSA OID for this signature.
    pub fn oid(&self) -> ObjectIdentifier {
        self.oid
    }

    /// Serialize this signature as bytes.
    pub fn to_bytes(&self) -> SignatureBytes<C>
    where
        SignatureSize<C>: ArrayLength<u8>,
    {
        self.signature.to_bytes()
    }
}

#[cfg(feature = "digest")]
impl<C> Copy for SignatureWithOid<C>
where
    C: PrimeCurve,
    SignatureSize<C>: ArrayLength<u8>,
    <SignatureSize<C> as ArrayLength<u8>>::ArrayType: Copy,
{
}

#[cfg(feature = "digest")]
impl<C> From<SignatureWithOid<C>> for Signature<C>
where
    C: PrimeCurve,
{
    fn from(sig: SignatureWithOid<C>) -> Signature<C> {
        sig.signature
    }
}

#[cfg(feature = "digest")]
impl<C> From<SignatureWithOid<C>> for SignatureBytes<C>
where
    C: PrimeCurve,
    SignatureSize<C>: ArrayLength<u8>,
{
    fn from(signature: SignatureWithOid<C>) -> SignatureBytes<C> {
        signature.to_bytes()
    }
}

/// NOTE: this implementation assumes the default digest for the given elliptic
/// curve as defined by [`hazmat::DigestPrimitive`].
///
/// When working with alternative digests, you will need to use e.g.
/// [`SignatureWithOid::new_with_digest`].
#[cfg(all(feature = "digest", feature = "hazmat"))]
impl<C> SignatureEncoding for SignatureWithOid<C>
where
    C: hazmat::DigestPrimitive,
    C::Digest: AssociatedOid,
    SignatureSize<C>: ArrayLength<u8>,
{
    type Repr = SignatureBytes<C>;
}

/// NOTE: this implementation assumes the default digest for the given elliptic
/// curve as defined by [`hazmat::DigestPrimitive`].
///
/// When working with alternative digests, you will need to use e.g.
/// [`SignatureWithOid::new_with_digest`].
#[cfg(all(feature = "digest", feature = "hazmat"))]
impl<C> TryFrom<&[u8]> for SignatureWithOid<C>
where
    C: hazmat::DigestPrimitive,
    C::Digest: AssociatedOid,
    SignatureSize<C>: ArrayLength<u8>,
{
    type Error = Error;

    fn try_from(slice: &[u8]) -> Result<Self> {
        Self::new(Signature::<C>::from_slice(slice)?, C::Digest::OID)
    }
}

#[cfg(all(feature = "alloc", feature = "pkcs8"))]
impl<C> DynAssociatedAlgorithmIdentifier for SignatureWithOid<C>
where
    C: PrimeCurve,
{
    fn algorithm_identifier(&self) -> spki::Result<AlgorithmIdentifierOwned> {
        Ok(AlgorithmIdentifierOwned {
            oid: self.oid,
            parameters: None,
        })
    }
}

/// Get the ECDSA OID for a given digest OID.
#[cfg(feature = "digest")]
const fn ecdsa_oid_for_digest(digest_oid: ObjectIdentifier) -> Option<ObjectIdentifier> {
    match digest_oid {
        SHA224_OID => Some(ECDSA_SHA224_OID),
        SHA256_OID => Some(ECDSA_SHA256_OID),
        SHA384_OID => Some(ECDSA_SHA384_OID),
        SHA512_OID => Some(ECDSA_SHA512_OID),
        _ => None,
    }
}