ruint/algorithms/div/
small.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
//! Small division using reciprocals from [MG10].
//!
//! [MG10]: https://gmplib.org/~tege/division-paper.pdf

// Following naming from paper.
#![allow(clippy::many_single_char_names, clippy::similar_names)]
// Truncation is intentional
#![allow(clippy::cast_possible_truncation)]

use super::reciprocal::{reciprocal, reciprocal_2};
use crate::{algorithms::DoubleWord, utils::unlikely};

// The running time is 2.7 ns for [`div_2x1_mg10`] versus 18 ns for
// [`div_2x1_ref`].
pub use self::{div_2x1_mg10 as div_2x1, div_3x2_mg10 as div_3x2};

/// ⚠️ Compute single limb normalized division.
///
/// The divisor must be normalized. See algorithm 7 from [MG10].
///
/// [MG10]: https://gmplib.org/~tege/division-paper.pdf
#[inline]
pub fn div_nx1_normalized(u: &mut [u64], d: u64) -> u64 {
    // OPT: Version with in-place shifting of `u`
    debug_assert!(d >= (1 << 63));

    let v = reciprocal(d);
    let mut r: u64 = 0;
    for u in u.iter_mut().rev() {
        let n = u128::join(r, *u);
        let (q, r0) = div_2x1(n, d, v);
        *u = q;
        r = r0;
    }
    r
}

/// ⚠️ Compute single limb division.
///
/// The highest limb of `numerator` and `divisor` must be nonzero.
/// The divisor does not need normalization.
/// See algorithm 7 from [MG10].
///
/// [MG10]: https://gmplib.org/~tege/division-paper.pdf
///
/// # Panics
///
/// May panics if the above requirements are not met.
// TODO: Rewrite in a way that avoids bounds-checks without unsafe.
#[inline]
pub fn div_nx1(limbs: &mut [u64], divisor: u64) -> u64 {
    debug_assert!(divisor != 0);
    debug_assert!(!limbs.is_empty());
    debug_assert!(*limbs.last().unwrap() != 0);

    // Normalize and compute reciprocal
    let shift = divisor.leading_zeros();
    if shift == 0 {
        return div_nx1_normalized(limbs, divisor);
    }
    let divisor = divisor << shift;
    let reciprocal = reciprocal(divisor);

    let last = unsafe { limbs.get_unchecked(limbs.len() - 1) };
    let mut remainder = last >> (64 - shift);
    for i in (1..limbs.len()).rev() {
        // Shift limbs
        let upper = unsafe { limbs.get_unchecked(i) };
        let lower = unsafe { limbs.get_unchecked(i - 1) };
        let u = (upper << shift) | (lower >> (64 - shift));

        // Compute quotient
        let n = u128::join(remainder, u);
        let (q, r) = div_2x1(n, divisor, reciprocal);

        // Store quotient
        *unsafe { limbs.get_unchecked_mut(i) } = q;
        remainder = r;
    }
    // Compute last quotient
    let first = unsafe { limbs.get_unchecked_mut(0) };
    let n = u128::join(remainder, *first << shift);
    let (q, remainder) = div_2x1(n, divisor, reciprocal);
    *first = q;

    // Un-normalize remainder
    remainder >> shift
}

/// ⚠️ Compute double limb normalized division.
///
/// Requires `divisor` to be in the range $[2^{127}, 2^{128})$ (i.e.
/// normalized). Same as [`div_nx1`] but using [`div_3x2`] internally.
#[inline]
pub fn div_nx2_normalized(u: &mut [u64], d: u128) -> u128 {
    // OPT: Version with in-place shifting of `u`
    debug_assert!(d >= (1 << 127));

    let v = reciprocal_2(d);
    let mut remainder: u128 = 0;
    for u in u.iter_mut().rev() {
        let (q, r) = div_3x2(remainder, *u, d, v);
        *u = q;
        remainder = r;
    }
    remainder
}

/// ⚠️ Compute double limb division.
///
/// Requires `divisor` to be in the range $[2^{64}, 2^{128})$. Same as
/// [`div_nx2_normalized`] but does the shifting of the numerator inline.
///
/// # Panics
///
/// May panics if the above requirements are not met.
// TODO: Rewrite in a way that avoids bounds-checks without unsafe.
#[inline]
pub fn div_nx2(limbs: &mut [u64], divisor: u128) -> u128 {
    debug_assert!(divisor >= 1 << 64);
    debug_assert!(!limbs.is_empty());
    debug_assert!(*limbs.last().unwrap() != 0);

    // Normalize and compute reciprocal
    let shift = divisor.high().leading_zeros();
    if shift == 0 {
        return div_nx2_normalized(limbs, divisor);
    }
    let divisor = divisor << shift;
    let reciprocal = reciprocal_2(divisor);

    let last = unsafe { limbs.get_unchecked(limbs.len() - 1) };
    let mut remainder: u128 = u128::from(last >> (64 - shift));
    for i in (1..limbs.len()).rev() {
        // Shift limbs
        let upper = unsafe { limbs.get_unchecked(i) };
        let lower = unsafe { limbs.get_unchecked(i - 1) };
        let u = (upper << shift) | (lower >> (64 - shift));

        // Compute quotient
        let (q, r) = div_3x2(remainder, u, divisor, reciprocal);

        // Store quotient
        *unsafe { limbs.get_unchecked_mut(i) } = q;
        remainder = r;
    }
    // Compute last quotient
    let first = unsafe { limbs.get_unchecked_mut(0) };
    let (q, remainder) = div_3x2(remainder, *first << shift, divisor, reciprocal);
    *first = q;

    // Un-normalize remainder
    remainder >> shift
}

#[inline]
#[must_use]
pub fn div_2x1_ref(u: u128, d: u64) -> (u64, u64) {
    debug_assert!(d >= (1 << 63));
    debug_assert!((u >> 64) < u128::from(d));
    let d = u128::from(d);
    let q = (u / d) as u64;
    let r = (u % d) as u64;
    (q, r)
}

/// ⚠️ Computes the quotient and remainder of a `u128` divided by a `u64`.
///
/// Requires
/// * `u < d * 2**64`,
/// * `d >= 2**63`, and
/// * `v = reciprocal(d)`.
///
/// Implements algorithm 4 from [MG10].
///
/// [MG10]: https://gmplib.org/~tege/division-paper.pdf
#[inline]
#[must_use]
pub fn div_2x1_mg10(u: u128, d: u64, v: u64) -> (u64, u64) {
    debug_assert!(d >= (1 << 63));
    debug_assert!((u >> 64) < u128::from(d));
    debug_assert_eq!(v, reciprocal(d));

    let q = u + (u >> 64) * u128::from(v);
    let q0 = q as u64;
    let q1 = ((q >> 64) as u64).wrapping_add(1);
    let r = (u as u64).wrapping_sub(q1.wrapping_mul(d));
    let (q1, r) = if r > q0 {
        (q1.wrapping_sub(1), r.wrapping_add(d))
    } else {
        (q1, r)
    };
    let (q1, r) = if unlikely(r >= d) {
        (q1.wrapping_add(1), r.wrapping_sub(d))
    } else {
        (q1, r)
    };
    (q1, r)
}

/// TODO: This implementation is off by one.
#[inline]
#[must_use]
pub fn div_3x2_ref(n21: u128, n0: u64, d: u128) -> u64 {
    debug_assert!(d >= (1 << 127));
    debug_assert!(n21 < d);

    let n2 = (n21 >> 64) as u64;
    let n1 = n21 as u64;
    let d1 = (d >> 64) as u64;
    let d0 = d as u64;

    if unlikely(n2 == d1) {
        // From [n2 n1] < [d1 d0] and n2 = d1 it follows that n[1] < d[0].
        debug_assert!(n1 < d0);
        // We start by subtracting 2^64 times the divisor, resulting in a
        // negative remainder. Depending on the result, we need to add back
        // in one or two times the divisor to make the remainder positive.
        // (It can not be more since the divisor is > 2^127 and the negated
        // remainder is < 2^128.)
        let neg_remainder = u128::from(d0).wrapping_sub((u128::from(n1) << 64) | u128::from(n0));
        if neg_remainder > d {
            0xffff_ffff_ffff_fffe_u64
        } else {
            0xffff_ffff_ffff_ffff_u64
        }
    } else {
        // Compute quotient and remainder
        let (mut q, mut r) = div_2x1_ref(n21, d1);

        let t1 = u128::from(q) * u128::from(d0);
        let t2 = (u128::from(n0) << 64) | u128::from(r);
        if t1 > t2 {
            q -= 1;
            r = r.wrapping_add(d1);
            let overflow = r < d1;
            if !overflow {
                let t1 = u128::from(q) * u128::from(d0);
                let t2 = (u128::from(n0) << 64) | u128::from(r);
                if t1 > t2 {
                    q -= 1;
                    // UNUSED: r += d[1];
                }
            }
        }
        q
    }
}

/// ⚠️ Computes the quotient of a 192 bits divided by a normalized u128.
///
/// Implements [MG10] algorithm 5.
///
/// [MG10]: https://gmplib.org/~tege/division-paper.pdf
#[inline]
#[must_use]
pub fn div_3x2_mg10(u21: u128, u0: u64, d: u128, v: u64) -> (u64, u128) {
    debug_assert!(d >= (1 << 127));
    debug_assert!(u21 < d);
    debug_assert_eq!(v, reciprocal_2(d));

    let q = u128::mul(u21.high(), v) + u21;
    let r1 = u21.low().wrapping_sub(q.high().wrapping_mul(d.high()));
    let t = u128::mul(d.low(), q.high());
    let mut r = u128::join(r1, u0).wrapping_sub(t).wrapping_sub(d);
    let mut q1 = q.high().wrapping_add(1);
    if r.high() >= q.low() {
        q1 = q1.wrapping_sub(1);
        r = r.wrapping_add(d);
    }
    if unlikely(r >= d) {
        q1 = q1.wrapping_add(1);
        r = r.wrapping_sub(d);
    }
    (q1, r)
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::algorithms::addmul;
    use proptest::{
        collection,
        num::{u128, u64},
        prop_assume, proptest,
        strategy::Strategy,
    };

    #[test]
    fn test_div_2x1_mg10() {
        proptest!(|(q: u64, r: u64, mut d: u64)| {
            let d = d | (1 << 63);
            let r = r % d;
            let n = u128::from(q) * u128::from(d) + u128::from(r);
            let v = reciprocal(d);
            assert_eq!(div_2x1_mg10(n, d, v), (q,r));
        });
    }

    #[ignore] // TODO
    #[test]
    fn test_div_3x2_ref() {
        proptest!(|(q: u64, r: u128, mut d: u128)| {
            let d = d | (1 << 127);
            let r = r % d;
            let (n21, n0) = {
                let d1 = (d >> 64) as u64;
                let d0 = d as u64;
                let r1 = (r >> 64) as u64;
                let r0 = r as u64;
                // n = q * d + r
                let n10 = u128::from(q) * u128::from(d0) + u128::from(r0);
                let n0 = n10 as u64;
                let n21 = (n10 >> 64) + u128::from(q) * u128::from(d1) + u128::from(r1);
                (n21, n0)
            };
            assert_eq!(div_3x2_ref(n21, n0, d), q);
        });
    }

    #[test]
    fn test_div_3x2_mg10() {
        proptest!(|(q: u64, r: u128, mut d: u128)| {
            let d = d | (1 << 127);
            let r = r % d;
            let (n21, n0) = {
                let d1 = (d >> 64) as u64;
                let d0 = d as u64;
                let r1 = (r >> 64) as u64;
                let r0 = r as u64;
                // n = q * d + r
                let n10 = u128::from(q) * u128::from(d0) + u128::from(r0);
                let n0 = n10 as u64;
                let n21 = (n10 >> 64) + u128::from(q) * u128::from(d1) + u128::from(r1);
                (n21, n0)
            };
            let v = reciprocal_2(d);
            assert_eq!(div_3x2_mg10(n21, n0, d, v), (q, r));
        });
    }

    #[test]
    fn test_div_nx1_normalized() {
        let any_vec = collection::vec(u64::ANY, ..10);
        proptest!(|(quotient in any_vec, mut divisor: u64, mut remainder: u64)| {
            // Construct problem
            divisor |= 1 << 63;
            remainder %= divisor;
            let mut numerator = vec![0; quotient.len() + 1];
            numerator[0] = remainder;
            addmul(&mut numerator, &quotient, &[divisor]);

            // Test
            let r = div_nx1_normalized(&mut numerator, divisor);
            assert_eq!(&numerator[..quotient.len()], &quotient);
            assert_eq!(r, remainder);
        });
    }

    #[test]
    fn test_div_nx1() {
        let any_vec = collection::vec(u64::ANY, 1..10);
        let divrem = (1..u64::MAX, u64::ANY).prop_map(|(d, r)| (d, r % d));
        proptest!(|(quotient in any_vec,(divisor, remainder) in divrem)| {
            // Construct problem
            let mut numerator = vec![0; quotient.len() + 1];
            numerator[0] = remainder;
            addmul( &mut numerator, &quotient, &[divisor]);

            // Trim numerator
            while numerator.last() == Some(&0) {
                numerator.pop();
            }
            prop_assume!(!numerator.is_empty());

            // Test
            let r = div_nx1(&mut numerator, divisor);
            assert_eq!(&numerator[..quotient.len()], &quotient);
            assert_eq!(r, remainder);
        });
    }

    #[test]
    fn test_div_nx2_normalized() {
        let any_vec = collection::vec(u64::ANY, ..10);
        let divrem = (1_u128 << 127.., u128::ANY).prop_map(|(d, r)| (d, r % d));
        proptest!(|(quotient in any_vec, (divisor, remainder) in divrem)| {
            // Construct problem
            let mut numerator = vec![0; quotient.len() + 2];
            numerator[0] = remainder.low();
            numerator[1] = remainder.high();
            addmul(&mut numerator, &quotient, &[divisor.low(), divisor.high()]);

            // Test
            let r = div_nx2_normalized(&mut numerator, divisor);
            assert_eq!(&numerator[..quotient.len()], &quotient);
            assert_eq!(r, remainder);
        });
    }

    #[test]
    fn test_div_nx2() {
        let any_vec = collection::vec(u64::ANY, 2..10);
        let divrem = (1..u128::MAX, u128::ANY).prop_map(|(d, r)| (d, r % d));
        proptest!(|(quotient in any_vec,(divisor, remainder) in divrem)| {
            // Construct problem
            let mut numerator = vec![0; quotient.len() + 2];
            numerator[0] = remainder.low();
            numerator[1] = remainder.high();
            addmul(&mut numerator, &quotient, &[divisor.low(), divisor.high()]);

            // Trim numerator
            while numerator.last() == Some(&0) {
                numerator.pop();
            }
            prop_assume!(!numerator.is_empty());

            // Test
            let r = div_nx2(&mut numerator, divisor);
            assert_eq!(&numerator[..quotient.len()], &quotient);
            assert_eq!(r, remainder);
        });
    }
}