sketches_ddsketch/
store.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#[cfg(feature = "use_serde")]
use serde::{Deserialize, Serialize};

const CHUNK_SIZE: i32 = 128;

// Divide the `dividend` by the `divisor`, rounding towards positive infinity.
//
// Similar to the nightly only `std::i32::div_ceil`.
fn div_ceil(dividend: i32, divisor: i32) -> i32 {
    (dividend + divisor - 1) / divisor
}

/// CollapsingLowestDenseStore
#[derive(Clone, Debug)]
#[cfg_attr(feature = "use_serde", derive(Serialize, Deserialize))]
pub struct Store {
    bins: Vec<u64>,
    count: u64,
    min_key: i32,
    max_key: i32,
    offset: i32,
    bin_limit: usize,
    is_collapsed: bool,
}

impl Store {
    pub fn new(bin_limit: usize) -> Self {
        Store {
            bins: Vec::new(),
            count: 0,
            min_key: i32::MAX,
            max_key: i32::MIN,
            offset: 0,
            bin_limit,
            is_collapsed: false,
        }
    }

    /// Return the number of bins.
    pub fn length(&self) -> i32 {
        self.bins.len() as i32
    }

    pub fn is_empty(&self) -> bool {
        self.bins.is_empty()
    }

    pub fn add(&mut self, key: i32) {
        let idx = self.get_index(key);
        self.bins[idx] += 1;
        self.count += 1;
    }

    fn get_index(&mut self, key: i32) -> usize {
        if key < self.min_key {
            if self.is_collapsed {
                return 0;
            }

            self.extend_range(key, None);
            if self.is_collapsed {
                return 0;
            }
        } else if key > self.max_key {
            self.extend_range(key, None);
        }

        (key - self.offset) as usize
    }

    fn extend_range(&mut self, key: i32, second_key: Option<i32>) {
        let second_key = second_key.unwrap_or(key);
        let new_min_key = i32::min(key, i32::min(second_key, self.min_key));
        let new_max_key = i32::max(key, i32::max(second_key, self.max_key));

        if self.is_empty() {
            let new_len = self.get_new_length(new_min_key, new_max_key);
            self.bins.resize(new_len, 0);
            self.offset = new_min_key;
            self.adjust(new_min_key, new_max_key);
        } else if new_min_key >= self.min_key && new_max_key < self.offset + self.length() {
            self.min_key = new_min_key;
            self.max_key = new_max_key;
        } else {
            // Grow bins
            let new_length = self.get_new_length(new_min_key, new_max_key);
            if new_length > self.length() as usize {
                self.bins.resize(new_length, 0);
            }
            self.adjust(new_min_key, new_max_key);
        }
    }

    fn get_new_length(&self, new_min_key: i32, new_max_key: i32) -> usize {
        let desired_length = new_max_key - new_min_key + 1;
        usize::min(
            (CHUNK_SIZE * div_ceil(desired_length, CHUNK_SIZE)) as usize,
            self.bin_limit,
        )
    }

    fn adjust(&mut self, new_min_key: i32, new_max_key: i32) {
        if new_max_key - new_min_key + 1 > self.length() {
            let new_min_key = new_max_key - self.length() + 1;

            if new_min_key >= self.max_key {
                // Put everything in the first bin.
                self.offset = new_min_key;
                self.min_key = new_min_key;
                self.bins.fill(0);
                self.bins[0] = self.count;
            } else {
                let shift = self.offset - new_min_key;
                if shift < 0 {
                    let collapse_start_index = (self.min_key - self.offset) as usize;
                    let collapse_end_index = (new_min_key - self.offset) as usize;
                    let collapsed_count: u64 = self.bins[collapse_start_index..collapse_end_index]
                        .iter()
                        .sum();
                    let zero_len = (new_min_key - self.min_key) as usize;
                    self.bins.splice(
                        collapse_start_index..collapse_end_index,
                        std::iter::repeat(0).take(zero_len),
                    );
                    self.bins[collapse_end_index] += collapsed_count;
                }
                self.min_key = new_min_key;
                self.shift_bins(shift);
            }

            self.max_key = new_max_key;
            self.is_collapsed = true;
        } else {
            self.center_bins(new_min_key, new_max_key);
            self.min_key = new_min_key;
            self.max_key = new_max_key;
        }
    }

    fn shift_bins(&mut self, shift: i32) {
        if shift > 0 {
            let shift = shift as usize;
            self.bins.rotate_right(shift);
            for idx in 0..shift {
                self.bins[idx] = 0;
            }
        } else {
            let shift = shift.abs() as usize;
            for idx in 0..shift {
                self.bins[idx] = 0;
            }
            self.bins.rotate_left(shift);
        }

        self.offset -= shift;
    }

    fn center_bins(&mut self, new_min_key: i32, new_max_key: i32) {
        let middle_key = new_min_key + (new_max_key - new_min_key + 1) / 2;
        let shift = self.offset + self.length() / 2 - middle_key;
        self.shift_bins(shift)
    }

    pub fn key_at_rank(&self, rank: u64) -> i32 {
        let mut n = 0;
        for (i, bin) in self.bins.iter().enumerate() {
            n += *bin;
            if n > rank {
                return i as i32 + self.offset;
            }
        }

        self.max_key
    }

    pub fn count(&self) -> u64 {
        self.count
    }

    pub fn merge(&mut self, other: &Store) {
        if other.count == 0 {
            return;
        }

        if self.count == 0 {
            self.copy(other);
            return;
        }

        if other.min_key < self.min_key || other.max_key > self.max_key {
            self.extend_range(other.min_key, Some(other.max_key));
        }

        let collapse_start_index = other.min_key - other.offset;
        let mut collapse_end_index = i32::min(self.min_key, other.max_key + 1) - other.offset;
        if collapse_end_index > collapse_start_index {
            let collapsed_count: u64 = self.bins
                [collapse_start_index as usize..collapse_end_index as usize]
                .iter()
                .sum();
            self.bins[0] += collapsed_count;
        } else {
            collapse_end_index = collapse_start_index;
        }

        for key in (collapse_end_index + other.offset)..(other.max_key + 1) {
            self.bins[(key - self.offset) as usize] += other.bins[(key - other.offset) as usize]
        }

        self.count += other.count;
    }

    fn copy(&mut self, o: &Store) {
        self.bins = o.bins.clone();
        self.count = o.count;
        self.min_key = o.min_key;
        self.max_key = o.max_key;
        self.offset = o.offset;
        self.bin_limit = o.bin_limit;
        self.is_collapsed = o.is_collapsed;
    }
}

#[cfg(test)]
mod tests {
    use crate::store::Store;

    #[test]
    fn test_simple_store() {
        let mut s = Store::new(2048);

        for i in 0..2048 {
            s.add(i);
        }
    }

    #[test]
    fn test_simple_store_rev() {
        let mut s = Store::new(2048);

        for i in 2048..0 {
            s.add(i);
        }
    }
}