halo2_proofs/
arithmetic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
//! This module provides common utilities, traits and structures for group,
//! field and polynomial arithmetic.

use super::multicore;
pub use ff::Field;
use group::{
    ff::{BatchInvert, PrimeField},
    Group as _,
};

pub use pasta_curves::arithmetic::*;

fn multiexp_serial<C: CurveAffine>(coeffs: &[C::Scalar], bases: &[C], acc: &mut C::Curve) {
    let coeffs: Vec<_> = coeffs.iter().map(|a| a.to_repr()).collect();

    let c = if bases.len() < 4 {
        1
    } else if bases.len() < 32 {
        3
    } else {
        (f64::from(bases.len() as u32)).ln().ceil() as usize
    };

    fn get_at<F: PrimeField>(segment: usize, c: usize, bytes: &F::Repr) -> usize {
        let skip_bits = segment * c;
        let skip_bytes = skip_bits / 8;

        if skip_bytes >= 32 {
            return 0;
        }

        let mut v = [0; 8];
        for (v, o) in v.iter_mut().zip(bytes.as_ref()[skip_bytes..].iter()) {
            *v = *o;
        }

        let mut tmp = u64::from_le_bytes(v);
        tmp >>= skip_bits - (skip_bytes * 8);
        tmp = tmp % (1 << c);

        tmp as usize
    }

    let segments = (256 / c) + 1;

    for current_segment in (0..segments).rev() {
        for _ in 0..c {
            *acc = acc.double();
        }

        #[derive(Clone, Copy)]
        enum Bucket<C: CurveAffine> {
            None,
            Affine(C),
            Projective(C::Curve),
        }

        impl<C: CurveAffine> Bucket<C> {
            fn add_assign(&mut self, other: &C) {
                *self = match *self {
                    Bucket::None => Bucket::Affine(*other),
                    Bucket::Affine(a) => Bucket::Projective(a + *other),
                    Bucket::Projective(mut a) => {
                        a += *other;
                        Bucket::Projective(a)
                    }
                }
            }

            fn add(self, mut other: C::Curve) -> C::Curve {
                match self {
                    Bucket::None => other,
                    Bucket::Affine(a) => {
                        other += a;
                        other
                    }
                    Bucket::Projective(a) => other + &a,
                }
            }
        }

        let mut buckets: Vec<Bucket<C>> = vec![Bucket::None; (1 << c) - 1];

        for (coeff, base) in coeffs.iter().zip(bases.iter()) {
            let coeff = get_at::<C::Scalar>(current_segment, c, coeff);
            if coeff != 0 {
                buckets[coeff - 1].add_assign(base);
            }
        }

        // Summation by parts
        // e.g. 3a + 2b + 1c = a +
        //                    (a) + b +
        //                    ((a) + b) + c
        let mut running_sum = C::Curve::identity();
        for exp in buckets.into_iter().rev() {
            running_sum = exp.add(running_sum);
            *acc = *acc + &running_sum;
        }
    }
}

/// Performs a small multi-exponentiation operation.
/// Uses the double-and-add algorithm with doublings shared across points.
pub fn small_multiexp<C: CurveAffine>(coeffs: &[C::Scalar], bases: &[C]) -> C::Curve {
    let coeffs: Vec<_> = coeffs.iter().map(|a| a.to_repr()).collect();
    let mut acc = C::Curve::identity();

    // for byte idx
    for byte_idx in (0..32).rev() {
        // for bit idx
        for bit_idx in (0..8).rev() {
            acc = acc.double();
            // for each coeff
            for coeff_idx in 0..coeffs.len() {
                let byte = coeffs[coeff_idx].as_ref()[byte_idx];
                if ((byte >> bit_idx) & 1) != 0 {
                    acc += bases[coeff_idx];
                }
            }
        }
    }

    acc
}

/// Performs a multi-exponentiation operation.
///
/// This function will panic if coeffs and bases have a different length.
///
/// This will use multithreading if beneficial.
pub fn best_multiexp<C: CurveAffine>(coeffs: &[C::Scalar], bases: &[C]) -> C::Curve {
    assert_eq!(coeffs.len(), bases.len());

    let num_threads = multicore::current_num_threads();
    if coeffs.len() > num_threads {
        let chunk = coeffs.len() / num_threads;
        let num_chunks = coeffs.chunks(chunk).len();
        let mut results = vec![C::Curve::identity(); num_chunks];
        multicore::scope(|scope| {
            let chunk = coeffs.len() / num_threads;

            for ((coeffs, bases), acc) in coeffs
                .chunks(chunk)
                .zip(bases.chunks(chunk))
                .zip(results.iter_mut())
            {
                scope.spawn(move |_| {
                    multiexp_serial(coeffs, bases, acc);
                });
            }
        });
        results.iter().fold(C::Curve::identity(), |a, b| a + b)
    } else {
        let mut acc = C::Curve::identity();
        multiexp_serial(coeffs, bases, &mut acc);
        acc
    }
}

/// Performs a radix-$2$ Fast-Fourier Transformation (FFT) on a vector of size
/// $n = 2^k$, when provided `log_n` = $k$ and an element of multiplicative
/// order $n$ called `omega` ($\omega$). The result is that the vector `a`, when
/// interpreted as the coefficients of a polynomial of degree $n - 1$, is
/// transformed into the evaluations of this polynomial at each of the $n$
/// distinct powers of $\omega$. This transformation is invertible by providing
/// $\omega^{-1}$ in place of $\omega$ and dividing each resulting field element
/// by $n$.
///
/// This will use multithreading if beneficial.
pub fn best_fft<G: Group>(a: &mut [G], omega: G::Scalar, log_n: u32) {
    fn bitreverse(mut n: usize, l: usize) -> usize {
        let mut r = 0;
        for _ in 0..l {
            r = (r << 1) | (n & 1);
            n >>= 1;
        }
        r
    }

    let threads = multicore::current_num_threads();
    let log_threads = log2_floor(threads);
    let n = a.len() as usize;
    assert_eq!(n, 1 << log_n);

    for k in 0..n {
        let rk = bitreverse(k, log_n as usize);
        if k < rk {
            a.swap(rk, k);
        }
    }

    // precompute twiddle factors
    let twiddles: Vec<_> = (0..(n / 2) as usize)
        .scan(G::Scalar::one(), |w, _| {
            let tw = *w;
            w.group_scale(&omega);
            Some(tw)
        })
        .collect();

    if log_n <= log_threads {
        let mut chunk = 2_usize;
        let mut twiddle_chunk = (n / 2) as usize;
        for _ in 0..log_n {
            a.chunks_mut(chunk).for_each(|coeffs| {
                let (left, right) = coeffs.split_at_mut(chunk / 2);

                // case when twiddle factor is one
                let (a, left) = left.split_at_mut(1);
                let (b, right) = right.split_at_mut(1);
                let t = b[0];
                b[0] = a[0];
                a[0].group_add(&t);
                b[0].group_sub(&t);

                left.iter_mut()
                    .zip(right.iter_mut())
                    .enumerate()
                    .for_each(|(i, (a, b))| {
                        let mut t = *b;
                        t.group_scale(&twiddles[(i + 1) * twiddle_chunk]);
                        *b = *a;
                        a.group_add(&t);
                        b.group_sub(&t);
                    });
            });
            chunk *= 2;
            twiddle_chunk /= 2;
        }
    } else {
        recursive_butterfly_arithmetic(a, n, 1, &twiddles)
    }
}

/// This perform recursive butterfly arithmetic
pub fn recursive_butterfly_arithmetic<G: Group>(
    a: &mut [G],
    n: usize,
    twiddle_chunk: usize,
    twiddles: &[G::Scalar],
) {
    if n == 2 {
        let t = a[1];
        a[1] = a[0];
        a[0].group_add(&t);
        a[1].group_sub(&t);
    } else {
        let (left, right) = a.split_at_mut(n / 2);
        rayon::join(
            || recursive_butterfly_arithmetic(left, n / 2, twiddle_chunk * 2, twiddles),
            || recursive_butterfly_arithmetic(right, n / 2, twiddle_chunk * 2, twiddles),
        );

        // case when twiddle factor is one
        let (a, left) = left.split_at_mut(1);
        let (b, right) = right.split_at_mut(1);
        let t = b[0];
        b[0] = a[0];
        a[0].group_add(&t);
        b[0].group_sub(&t);

        left.iter_mut()
            .zip(right.iter_mut())
            .enumerate()
            .for_each(|(i, (a, b))| {
                let mut t = *b;
                t.group_scale(&twiddles[(i + 1) * twiddle_chunk]);
                *b = *a;
                a.group_add(&t);
                b.group_sub(&t);
            });
    }
}

/// This evaluates a provided polynomial (in coefficient form) at `point`.
pub fn eval_polynomial<F: Field>(poly: &[F], point: F) -> F {
    // TODO: parallelize?
    poly.iter()
        .rev()
        .fold(F::zero(), |acc, coeff| acc * point + coeff)
}

/// This computes the inner product of two vectors `a` and `b`.
///
/// This function will panic if the two vectors are not the same size.
pub fn compute_inner_product<F: Field>(a: &[F], b: &[F]) -> F {
    // TODO: parallelize?
    assert_eq!(a.len(), b.len());

    let mut acc = F::zero();
    for (a, b) in a.iter().zip(b.iter()) {
        acc += (*a) * (*b);
    }

    acc
}

/// Divides polynomial `a` in `X` by `X - b` with
/// no remainder.
pub fn kate_division<'a, F: Field, I: IntoIterator<Item = &'a F>>(a: I, mut b: F) -> Vec<F>
where
    I::IntoIter: DoubleEndedIterator + ExactSizeIterator,
{
    b = -b;
    let a = a.into_iter();

    let mut q = vec![F::zero(); a.len() - 1];

    let mut tmp = F::zero();
    for (q, r) in q.iter_mut().rev().zip(a.rev()) {
        let mut lead_coeff = *r;
        lead_coeff.sub_assign(&tmp);
        *q = lead_coeff;
        tmp = lead_coeff;
        tmp.mul_assign(&b);
    }

    q
}

/// This simple utility function will parallelize an operation that is to be
/// performed over a mutable slice.
pub fn parallelize<T: Send, F: Fn(&mut [T], usize) + Send + Sync + Clone>(v: &mut [T], f: F) {
    let n = v.len();
    let num_threads = multicore::current_num_threads();
    let mut chunk = (n as usize) / num_threads;
    if chunk < num_threads {
        chunk = n as usize;
    }

    multicore::scope(|scope| {
        for (chunk_num, v) in v.chunks_mut(chunk).enumerate() {
            let f = f.clone();
            scope.spawn(move |_| {
                let start = chunk_num * chunk;
                f(v, start);
            });
        }
    });
}

fn log2_floor(num: usize) -> u32 {
    assert!(num > 0);

    let mut pow = 0;

    while (1 << (pow + 1)) <= num {
        pow += 1;
    }

    pow
}

/// Returns coefficients of an n - 1 degree polynomial given a set of n points
/// and their evaluations. This function will panic if two values in `points`
/// are the same.
pub fn lagrange_interpolate<F: FieldExt>(points: &[F], evals: &[F]) -> Vec<F> {
    assert_eq!(points.len(), evals.len());
    if points.len() == 1 {
        // Constant polynomial
        return vec![evals[0]];
    } else {
        let mut denoms = Vec::with_capacity(points.len());
        for (j, x_j) in points.iter().enumerate() {
            let mut denom = Vec::with_capacity(points.len() - 1);
            for x_k in points
                .iter()
                .enumerate()
                .filter(|&(k, _)| k != j)
                .map(|a| a.1)
            {
                denom.push(*x_j - x_k);
            }
            denoms.push(denom);
        }
        // Compute (x_j - x_k)^(-1) for each j != i
        denoms.iter_mut().flat_map(|v| v.iter_mut()).batch_invert();

        let mut final_poly = vec![F::zero(); points.len()];
        for (j, (denoms, eval)) in denoms.into_iter().zip(evals.iter()).enumerate() {
            let mut tmp: Vec<F> = Vec::with_capacity(points.len());
            let mut product = Vec::with_capacity(points.len() - 1);
            tmp.push(F::one());
            for (x_k, denom) in points
                .iter()
                .enumerate()
                .filter(|&(k, _)| k != j)
                .map(|a| a.1)
                .zip(denoms.into_iter())
            {
                product.resize(tmp.len() + 1, F::zero());
                for ((a, b), product) in tmp
                    .iter()
                    .chain(std::iter::once(&F::zero()))
                    .zip(std::iter::once(&F::zero()).chain(tmp.iter()))
                    .zip(product.iter_mut())
                {
                    *product = *a * (-denom * x_k) + *b * denom;
                }
                std::mem::swap(&mut tmp, &mut product);
            }
            assert_eq!(tmp.len(), points.len());
            assert_eq!(product.len(), points.len() - 1);
            for (final_coeff, interpolation_coeff) in final_poly.iter_mut().zip(tmp.into_iter()) {
                *final_coeff += interpolation_coeff * eval;
            }
        }
        final_poly
    }
}

#[cfg(test)]
use rand_core::OsRng;

#[cfg(test)]
use crate::pasta::Fp;

#[test]
fn test_lagrange_interpolate() {
    let rng = OsRng;

    let points = (0..5).map(|_| Fp::random(rng)).collect::<Vec<_>>();
    let evals = (0..5).map(|_| Fp::random(rng)).collect::<Vec<_>>();

    for coeffs in 0..5 {
        let points = &points[0..coeffs];
        let evals = &evals[0..coeffs];

        let poly = lagrange_interpolate(points, evals);
        assert_eq!(poly.len(), points.len());

        for (point, eval) in points.iter().zip(evals) {
            assert_eq!(eval_polynomial(&poly, *point), *eval);
        }
    }
}