halo2_ecc/fields/
fp2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
use std::fmt::Debug;
use std::marker::PhantomData;

use crate::ff::PrimeField as _;
use crate::impl_field_ext_chip_common;

use super::{
    vector::{FieldVector, FieldVectorChip},
    BigPrimeField, FieldChip, FieldExtConstructor, PrimeFieldChip,
};
use halo2_base::{utils::modulus, AssignedValue, Context};
use num_bigint::BigUint;

/// Represent Fp2 point as `FieldVector` with degree = 2
/// `Fp2 = Fp[u] / (u^2 + 1)`
/// This implementation assumes p = 3 (mod 4) in order for the polynomial u^2 + 1 to be irreducible over Fp; i.e., in order for -1 to not be a square (quadratic residue) in Fp
/// This means we store an Fp2 point as `a_0 + a_1 * u` where `a_0, a_1 in Fp`
#[derive(Clone, Copy, Debug)]
pub struct Fp2Chip<'a, F: BigPrimeField, FpChip: FieldChip<F>, Fp2>(
    pub FieldVectorChip<'a, F, FpChip>,
    PhantomData<Fp2>,
);

impl<'a, F: BigPrimeField, FpChip: PrimeFieldChip<F>, Fp2: crate::ff::Field>
    Fp2Chip<'a, F, FpChip, Fp2>
where
    FpChip::FieldType: BigPrimeField,
{
    /// User must construct an `FpChip` first using a config. This is intended so everything shares a single `FlexGateChip`, which is needed for the column allocation to work.
    pub fn new(fp_chip: &'a FpChip) -> Self {
        assert_eq!(
            modulus::<FpChip::FieldType>() % 4usize,
            BigUint::from(3u64),
            "p must be 3 (mod 4) for the polynomial u^2 + 1 to be irreducible"
        );
        Self(FieldVectorChip::new(fp_chip), PhantomData)
    }

    pub fn fp_chip(&self) -> &FpChip {
        self.0.fp_chip
    }

    pub fn conjugate(
        &self,
        ctx: &mut Context<F>,
        a: FieldVector<FpChip::FieldPoint>,
    ) -> FieldVector<FpChip::FieldPoint> {
        let mut a = a.0;
        assert_eq!(a.len(), 2);

        let neg_a1 = self.fp_chip().negate(ctx, a.pop().unwrap());
        FieldVector(vec![a.pop().unwrap(), neg_a1])
    }

    pub fn neg_conjugate(
        &self,
        ctx: &mut Context<F>,
        a: FieldVector<FpChip::FieldPoint>,
    ) -> FieldVector<FpChip::FieldPoint> {
        assert_eq!(a.0.len(), 2);
        let mut a = a.0.into_iter();

        let neg_a0 = self.fp_chip().negate(ctx, a.next().unwrap());
        FieldVector(vec![neg_a0, a.next().unwrap()])
    }
}

impl<'a, F, FpChip, Fp2> FieldChip<F> for Fp2Chip<'a, F, FpChip, Fp2>
where
    F: BigPrimeField,
    FpChip::FieldType: BigPrimeField,
    FpChip: PrimeFieldChip<F>,
    Fp2: crate::ff::Field + FieldExtConstructor<FpChip::FieldType, 2>,
    FieldVector<FpChip::UnsafeFieldPoint>: From<FieldVector<FpChip::FieldPoint>>,
    FieldVector<FpChip::FieldPoint>: From<FieldVector<FpChip::ReducedFieldPoint>>,
{
    const PRIME_FIELD_NUM_BITS: u32 = FpChip::FieldType::NUM_BITS;
    type UnsafeFieldPoint = FieldVector<FpChip::UnsafeFieldPoint>;
    type FieldPoint = FieldVector<FpChip::FieldPoint>;
    type ReducedFieldPoint = FieldVector<FpChip::ReducedFieldPoint>;
    type FieldType = Fp2;
    type RangeChip = FpChip::RangeChip;

    fn get_assigned_value(&self, x: &Self::UnsafeFieldPoint) -> Fp2 {
        assert_eq!(x.0.len(), 2);
        let c0 = self.fp_chip().get_assigned_value(&x[0]);
        let c1 = self.fp_chip().get_assigned_value(&x[1]);
        Fp2::new([c0, c1])
    }

    fn mul_no_carry(
        &self,
        ctx: &mut Context<F>,
        a: impl Into<Self::UnsafeFieldPoint>,
        b: impl Into<Self::UnsafeFieldPoint>,
    ) -> Self::UnsafeFieldPoint {
        let a = a.into().0;
        let b = b.into().0;
        assert_eq!(a.len(), 2);
        assert_eq!(b.len(), 2);
        let fp_chip = self.fp_chip();
        // (a_0 + a_1 * u) * (b_0 + b_1 * u) = (a_0 b_0 - a_1 b_1) + (a_0 b_1 + a_1 b_0) * u
        let mut ab_coeffs = Vec::with_capacity(4);
        for a_i in a {
            for b_j in b.iter() {
                let coeff = fp_chip.mul_no_carry(ctx, &a_i, b_j);
                ab_coeffs.push(coeff);
            }
        }
        let a0b0_minus_a1b1 = fp_chip.sub_no_carry(ctx, &ab_coeffs[0], &ab_coeffs[3]);
        let a0b1_plus_a1b0 = fp_chip.add_no_carry(ctx, &ab_coeffs[1], &ab_coeffs[2]);

        FieldVector(vec![a0b0_minus_a1b1, a0b1_plus_a1b0])
    }

    // ========= inherited from FieldVectorChip =========
    impl_field_ext_chip_common!();
}

mod bn254 {
    use crate::fields::FieldExtConstructor;
    use crate::halo2_proofs::halo2curves::bn256::{Fq, Fq2};
    impl FieldExtConstructor<Fq, 2> for Fq2 {
        fn new(c: [Fq; 2]) -> Self {
            Fq2 { c0: c[0], c1: c[1] }
        }

        fn coeffs(&self) -> Vec<Fq> {
            vec![self.c0, self.c1]
        }
    }
}