k256/arithmetic/
mul.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
//! From libsecp256k1:
//!
//! The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
//! lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
//!         0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
//!
//! "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
//! (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
//! and k2 have a small size.
//! It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
//!
//! - a1 =      {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
//! - b1 =     -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
//! - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
//! - b2 =      {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
//!
//! The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
//! k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
//! compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
//!
//! g1, g2 are precomputed constants used to replace division with a rounded multiplication
//! when decomposing the scalar for an endomorphism-based point multiplication.
//!
//! The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
//! Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
//!
//! The derivation is described in the paper "Efficient Software Implementation of Public-Key
//! Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
//! Section 4.3 (here we use a somewhat higher-precision estimate):
//! d = a1*b2 - b1*a2
//! g1 = round((2^384)*b2/d)
//! g2 = round((2^384)*(-b1)/d)
//!
//! (Note that 'd' is also equal to the curve order here because `[a1,b1]` and `[a2,b2]` are found
//! as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').

#[cfg(all(
    feature = "precomputed-tables",
    not(any(feature = "critical-section", feature = "std"))
))]
compile_error!("`precomputed-tables` feature requires either `critical-section` or `std`");

use crate::arithmetic::{
    scalar::{Scalar, WideScalar},
    ProjectivePoint,
};

use core::ops::{Mul, MulAssign};
use elliptic_curve::ops::LinearCombinationExt as LinearCombination;
use elliptic_curve::{
    ops::MulByGenerator,
    scalar::IsHigh,
    subtle::{Choice, ConditionallySelectable, ConstantTimeEq},
};

#[cfg(feature = "precomputed-tables")]
use once_cell::sync::Lazy;

/// Lookup table containing precomputed values `[p, 2p, 3p, ..., 8p]`
#[derive(Copy, Clone, Default)]
struct LookupTable([ProjectivePoint; 8]);

impl From<&ProjectivePoint> for LookupTable {
    fn from(p: &ProjectivePoint) -> Self {
        let mut points = [*p; 8];
        for j in 0..7 {
            points[j + 1] = p + &points[j];
        }
        LookupTable(points)
    }
}

impl LookupTable {
    /// Given -8 <= x <= 8, returns x * p in constant time.
    fn select(&self, x: i8) -> ProjectivePoint {
        debug_assert!(x >= -8);
        debug_assert!(x <= 8);

        // Compute xabs = |x|
        let xmask = x >> 7;
        let xabs = (x + xmask) ^ xmask;

        // Get an array element in constant time
        let mut t = ProjectivePoint::IDENTITY;
        for j in 1..9 {
            let c = (xabs as u8).ct_eq(&(j as u8));
            t.conditional_assign(&self.0[j - 1], c);
        }
        // Now t == |x| * p.

        let neg_mask = Choice::from((xmask & 1) as u8);
        t.conditional_assign(&-t, neg_mask);
        // Now t == x * p.

        t
    }
}

const MINUS_LAMBDA: Scalar = Scalar::from_bytes_unchecked(&[
    0xac, 0x9c, 0x52, 0xb3, 0x3f, 0xa3, 0xcf, 0x1f, 0x5a, 0xd9, 0xe3, 0xfd, 0x77, 0xed, 0x9b, 0xa4,
    0xa8, 0x80, 0xb9, 0xfc, 0x8e, 0xc7, 0x39, 0xc2, 0xe0, 0xcf, 0xc8, 0x10, 0xb5, 0x12, 0x83, 0xcf,
]);

const MINUS_B1: Scalar = Scalar::from_bytes_unchecked(&[
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0xe4, 0x43, 0x7e, 0xd6, 0x01, 0x0e, 0x88, 0x28, 0x6f, 0x54, 0x7f, 0xa9, 0x0a, 0xbf, 0xe4, 0xc3,
]);

const MINUS_B2: Scalar = Scalar::from_bytes_unchecked(&[
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
    0x8a, 0x28, 0x0a, 0xc5, 0x07, 0x74, 0x34, 0x6d, 0xd7, 0x65, 0xcd, 0xa8, 0x3d, 0xb1, 0x56, 0x2c,
]);

const G1: Scalar = Scalar::from_bytes_unchecked(&[
    0x30, 0x86, 0xd2, 0x21, 0xa7, 0xd4, 0x6b, 0xcd, 0xe8, 0x6c, 0x90, 0xe4, 0x92, 0x84, 0xeb, 0x15,
    0x3d, 0xaa, 0x8a, 0x14, 0x71, 0xe8, 0xca, 0x7f, 0xe8, 0x93, 0x20, 0x9a, 0x45, 0xdb, 0xb0, 0x31,
]);

const G2: Scalar = Scalar::from_bytes_unchecked(&[
    0xe4, 0x43, 0x7e, 0xd6, 0x01, 0x0e, 0x88, 0x28, 0x6f, 0x54, 0x7f, 0xa9, 0x0a, 0xbf, 0xe4, 0xc4,
    0x22, 0x12, 0x08, 0xac, 0x9d, 0xf5, 0x06, 0xc6, 0x15, 0x71, 0xb4, 0xae, 0x8a, 0xc4, 0x7f, 0x71,
]);

/*
 * Proof for decompose_scalar's bounds.
 *
 * Let
 *  - epsilon1 = 2^256 * |g1/2^384 - b2/d|
 *  - epsilon2 = 2^256 * |g2/2^384 - (-b1)/d|
 *  - c1 = round(k*g1/2^384)
 *  - c2 = round(k*g2/2^384)
 *
 * Lemma 1: |c1 - k*b2/d| < 2^-1 + epsilon1
 *
 *    |c1 - k*b2/d|
 *  =
 *    |c1 - k*g1/2^384 + k*g1/2^384 - k*b2/d|
 * <=   {triangle inequality}
 *    |c1 - k*g1/2^384| + |k*g1/2^384 - k*b2/d|
 *  =
 *    |c1 - k*g1/2^384| + k*|g1/2^384 - b2/d|
 * <    {rounding in c1 and 0 <= k < 2^256}
 *    2^-1 + 2^256 * |g1/2^384 - b2/d|
 *  =   {definition of epsilon1}
 *    2^-1 + epsilon1
 *
 * Lemma 2: |c2 - k*(-b1)/d| < 2^-1 + epsilon2
 *
 *    |c2 - k*(-b1)/d|
 *  =
 *    |c2 - k*g2/2^384 + k*g2/2^384 - k*(-b1)/d|
 * <=   {triangle inequality}
 *    |c2 - k*g2/2^384| + |k*g2/2^384 - k*(-b1)/d|
 *  =
 *    |c2 - k*g2/2^384| + k*|g2/2^384 - (-b1)/d|
 * <    {rounding in c2 and 0 <= k < 2^256}
 *    2^-1 + 2^256 * |g2/2^384 - (-b1)/d|
 *  =   {definition of epsilon2}
 *    2^-1 + epsilon2
 *
 * Let
 *  - k1 = k - c1*a1 - c2*a2
 *  - k2 = - c1*b1 - c2*b2
 *
 * Lemma 3: |k1| < (a1 + a2 + 1)/2 < 2^128
 *
 *    |k1|
 *  =   {definition of k1}
 *    |k - c1*a1 - c2*a2|
 *  =   {(a1*b2 - b1*a2)/n = 1}
 *    |k*(a1*b2 - b1*a2)/n - c1*a1 - c2*a2|
 *  =
 *    |a1*(k*b2/n - c1) + a2*(k*(-b1)/n - c2)|
 * <=   {triangle inequality}
 *    a1*|k*b2/n - c1| + a2*|k*(-b1)/n - c2|
 * <    {Lemma 1 and Lemma 2}
 *    a1*(2^-1 + epslion1) + a2*(2^-1 + epsilon2)
 * <    {rounding up to an integer}
 *    (a1 + a2 + 1)/2
 * <    {rounding up to a power of 2}
 *    2^128
 *
 * Lemma 4: |k2| < (-b1 + b2)/2 + 1 < 2^128
 *
 *    |k2|
 *  =   {definition of k2}
 *    |- c1*a1 - c2*a2|
 *  =   {(b1*b2 - b1*b2)/n = 0}
 *    |k*(b1*b2 - b1*b2)/n - c1*b1 - c2*b2|
 *  =
 *    |b1*(k*b2/n - c1) + b2*(k*(-b1)/n - c2)|
 * <=   {triangle inequality}
 *    (-b1)*|k*b2/n - c1| + b2*|k*(-b1)/n - c2|
 * <    {Lemma 1 and Lemma 2}
 *    (-b1)*(2^-1 + epslion1) + b2*(2^-1 + epsilon2)
 * <    {rounding up to an integer}
 *    (-b1 + b2)/2 + 1
 * <    {rounding up to a power of 2}
 *    2^128
 *
 * Let
 *  - r2 = k2 mod n
 *  - r1 = k - r2*lambda mod n.
 *
 * Notice that r1 is defined such that r1 + r2 * lambda == k (mod n).
 *
 * Lemma 5: r1 == k1 mod n.
 *
 *    r1
 * ==   {definition of r1 and r2}
 *    k - k2*lambda
 * ==   {definition of k2}
 *    k - (- c1*b1 - c2*b2)*lambda
 * ==
 *    k + c1*b1*lambda + c2*b2*lambda
 * ==  {a1 + b1*lambda == 0 mod n and a2 + b2*lambda == 0 mod n}
 *    k - c1*a1 - c2*a2
 * ==  {definition of k1}
 *    k1
 *
 * From Lemma 3, Lemma 4, Lemma 5 and the definition of r2, we can conclude that
 *
 *  - either r1 < 2^128 or -r1 mod n < 2^128
 *  - either r2 < 2^128 or -r2 mod n < 2^128.
 *
 * Q.E.D.
 */

/// Find r1 and r2 given k, such that r1 + r2 * lambda == k mod n.
fn decompose_scalar(k: &Scalar) -> (Scalar, Scalar) {
    // these _vartime calls are constant time since the shift amount is constant
    let c1 = WideScalar::mul_shift_vartime(k, &G1, 384) * MINUS_B1;
    let c2 = WideScalar::mul_shift_vartime(k, &G2, 384) * MINUS_B2;
    let r2 = c1 + c2;
    let r1 = k + r2 * MINUS_LAMBDA;

    (r1, r2)
}

// This needs to be an object to have Default implemented for it
// (required because it's used in static_map later)
// Otherwise we could just have a function returning an array.
#[derive(Copy, Clone)]
struct Radix16Decomposition<const D: usize>([i8; D]);

impl<const D: usize> Radix16Decomposition<D> {
    /// Returns an object containing a decomposition
    /// `[a_0, ..., a_D]` such that `sum(a_j * 2^(j * 4)) == x`,
    /// and `-8 <= a_j <= 7`.
    /// Assumes `x < 2^(4*(D-1))`.
    fn new(x: &Scalar) -> Self {
        debug_assert!((x >> (4 * (D - 1))).is_zero().unwrap_u8() == 1);

        // The resulting decomposition can be negative, so, despite the limit on `x`,
        // we need an additional byte to store the carry.
        let mut output = [0i8; D];

        // Step 1: change radix.
        // Convert from radix 256 (bytes) to radix 16 (nibbles)
        let bytes = x.to_bytes();
        for i in 0..(D - 1) / 2 {
            output[2 * i] = (bytes[31 - i] & 0xf) as i8;
            output[2 * i + 1] = ((bytes[31 - i] >> 4) & 0xf) as i8;
        }

        // Step 2: recenter coefficients from [0,16) to [-8,8)
        for i in 0..(D - 1) {
            let carry = (output[i] + 8) >> 4;
            output[i] -= carry << 4;
            output[i + 1] += carry;
        }

        Self(output)
    }
}

impl<const D: usize> Default for Radix16Decomposition<D> {
    fn default() -> Self {
        Self([0i8; D])
    }
}

impl<const N: usize> LinearCombination<[(ProjectivePoint, Scalar); N]> for ProjectivePoint {
    fn lincomb_ext(points_and_scalars: &[(ProjectivePoint, Scalar); N]) -> Self {
        let mut tables = [(LookupTable::default(), LookupTable::default()); N];
        let mut digits = [(
            Radix16Decomposition::<33>::default(),
            Radix16Decomposition::<33>::default(),
        ); N];

        lincomb(points_and_scalars, &mut tables, &mut digits)
    }
}

#[cfg(feature = "alloc")]
impl LinearCombination<[(ProjectivePoint, Scalar)]> for ProjectivePoint {
    fn lincomb_ext(points_and_scalars: &[(ProjectivePoint, Scalar)]) -> Self {
        let mut tables =
            vec![(LookupTable::default(), LookupTable::default()); points_and_scalars.len()];
        let mut digits = vec![
            (
                Radix16Decomposition::<33>::default(),
                Radix16Decomposition::<33>::default(),
            );
            points_and_scalars.len()
        ];

        lincomb(points_and_scalars, &mut tables, &mut digits)
    }
}

fn lincomb(
    xks: &[(ProjectivePoint, Scalar)],
    tables: &mut [(LookupTable, LookupTable)],
    digits: &mut [(Radix16Decomposition<33>, Radix16Decomposition<33>)],
) -> ProjectivePoint {
    xks.iter().enumerate().for_each(|(i, (x, k))| {
        let (r1, r2) = decompose_scalar(k);
        let x_beta = x.endomorphism();
        let (r1_sign, r2_sign) = (r1.is_high(), r2.is_high());

        let (r1_c, r2_c) = (
            Scalar::conditional_select(&r1, &-r1, r1_sign),
            Scalar::conditional_select(&r2, &-r2, r2_sign),
        );

        tables[i] = (
            LookupTable::from(&ProjectivePoint::conditional_select(x, &-*x, r1_sign)),
            LookupTable::from(&ProjectivePoint::conditional_select(
                &x_beta, &-x_beta, r2_sign,
            )),
        );

        digits[i] = (
            Radix16Decomposition::<33>::new(&r1_c),
            Radix16Decomposition::<33>::new(&r2_c),
        )
    });

    let mut acc = ProjectivePoint::IDENTITY;
    for component in 0..xks.len() {
        let (digit1, digit2) = digits[component];
        let (table1, table2) = tables[component];

        acc += &table1.select(digit1.0[32]);
        acc += &table2.select(digit2.0[32]);
    }

    for i in (0..32).rev() {
        for _j in 0..4 {
            acc = acc.double();
        }

        for component in 0..xks.len() {
            let (digit1, digit2) = digits[component];
            let (table1, table2) = tables[component];

            acc += &table1.select(digit1.0[i]);
            acc += &table2.select(digit2.0[i]);
        }
    }
    acc
}

/// Lazily computed basepoint table.
#[cfg(feature = "precomputed-tables")]
static GEN_LOOKUP_TABLE: Lazy<[LookupTable; 33]> = Lazy::new(precompute_gen_lookup_table);

#[cfg(feature = "precomputed-tables")]
fn precompute_gen_lookup_table() -> [LookupTable; 33] {
    let mut gen = ProjectivePoint::GENERATOR;
    let mut res = [LookupTable::default(); 33];

    for i in 0..33 {
        res[i] = LookupTable::from(&gen);
        // We are storing tables spaced by two radix steps,
        // to decrease the size of the precomputed data.
        for _ in 0..8 {
            gen = gen.double();
        }
    }
    res
}

impl MulByGenerator for ProjectivePoint {
    /// Calculates `k * G`, where `G` is the generator.
    #[cfg(not(feature = "precomputed-tables"))]
    fn mul_by_generator(k: &Scalar) -> ProjectivePoint {
        ProjectivePoint::GENERATOR * k
    }

    /// Calculates `k * G`, where `G` is the generator.
    #[cfg(feature = "precomputed-tables")]
    fn mul_by_generator(k: &Scalar) -> ProjectivePoint {
        let digits = Radix16Decomposition::<65>::new(k);
        let table = *GEN_LOOKUP_TABLE;
        let mut acc = table[32].select(digits.0[64]);
        let mut acc2 = ProjectivePoint::IDENTITY;
        for i in (0..32).rev() {
            acc2 += &table[i].select(digits.0[i * 2 + 1]);
            acc += &table[i].select(digits.0[i * 2]);
        }
        // This is the price of halving the precomputed table size (from 60kb to 30kb)
        // The performance hit is minor, about 3%.
        for _ in 0..4 {
            acc2 = acc2.double();
        }
        acc + acc2
    }
}

#[inline(always)]
fn mul(x: &ProjectivePoint, k: &Scalar) -> ProjectivePoint {
    ProjectivePoint::lincomb_ext(&[(*x, *k)])
}

impl Mul<Scalar> for ProjectivePoint {
    type Output = ProjectivePoint;

    fn mul(self, other: Scalar) -> ProjectivePoint {
        mul(&self, &other)
    }
}

impl Mul<&Scalar> for &ProjectivePoint {
    type Output = ProjectivePoint;

    fn mul(self, other: &Scalar) -> ProjectivePoint {
        mul(self, other)
    }
}

impl Mul<&Scalar> for ProjectivePoint {
    type Output = ProjectivePoint;

    fn mul(self, other: &Scalar) -> ProjectivePoint {
        mul(&self, other)
    }
}

impl MulAssign<Scalar> for ProjectivePoint {
    fn mul_assign(&mut self, rhs: Scalar) {
        *self = mul(self, &rhs);
    }
}

impl MulAssign<&Scalar> for ProjectivePoint {
    fn mul_assign(&mut self, rhs: &Scalar) {
        *self = mul(self, rhs);
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::arithmetic::{ProjectivePoint, Scalar};
    use elliptic_curve::{
        ops::{LinearCombination as _, MulByGenerator},
        rand_core::OsRng,
        Field, Group,
    };

    #[test]
    fn test_lincomb() {
        let x = ProjectivePoint::random(&mut OsRng);
        let y = ProjectivePoint::random(&mut OsRng);
        let k = Scalar::random(&mut OsRng);
        let l = Scalar::random(&mut OsRng);

        let reference = &x * &k + &y * &l;
        let test = ProjectivePoint::lincomb(&x, &k, &y, &l);
        assert_eq!(reference, test);
    }

    #[test]
    fn test_mul_by_generator() {
        let k = Scalar::random(&mut OsRng);
        let reference = &ProjectivePoint::GENERATOR * &k;
        let test = ProjectivePoint::mul_by_generator(&k);
        assert_eq!(reference, test);
    }

    #[cfg(feature = "alloc")]
    #[test]
    fn test_lincomb_slice() {
        let x = ProjectivePoint::random(&mut OsRng);
        let y = ProjectivePoint::random(&mut OsRng);
        let k = Scalar::random(&mut OsRng);
        let l = Scalar::random(&mut OsRng);

        let reference = &x * &k + &y * &l;
        let points_and_scalars = vec![(x, k), (y, l)];

        let test = ProjectivePoint::lincomb_ext(points_and_scalars.as_slice());
        assert_eq!(reference, test);
    }
}