k256/arithmetic/mul.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
//! From libsecp256k1:
//!
//! The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
//! lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
//! 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
//!
//! "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
//! (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
//! and k2 have a small size.
//! It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
//!
//! - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
//! - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
//! - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
//! - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
//!
//! The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
//! k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
//! compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
//!
//! g1, g2 are precomputed constants used to replace division with a rounded multiplication
//! when decomposing the scalar for an endomorphism-based point multiplication.
//!
//! The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
//! Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
//!
//! The derivation is described in the paper "Efficient Software Implementation of Public-Key
//! Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
//! Section 4.3 (here we use a somewhat higher-precision estimate):
//! d = a1*b2 - b1*a2
//! g1 = round((2^384)*b2/d)
//! g2 = round((2^384)*(-b1)/d)
//!
//! (Note that 'd' is also equal to the curve order here because `[a1,b1]` and `[a2,b2]` are found
//! as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
#[cfg(all(
feature = "precomputed-tables",
not(any(feature = "critical-section", feature = "std"))
))]
compile_error!("`precomputed-tables` feature requires either `critical-section` or `std`");
use crate::arithmetic::{
scalar::{Scalar, WideScalar},
ProjectivePoint,
};
use core::ops::{Mul, MulAssign};
use elliptic_curve::ops::LinearCombinationExt as LinearCombination;
use elliptic_curve::{
ops::MulByGenerator,
scalar::IsHigh,
subtle::{Choice, ConditionallySelectable, ConstantTimeEq},
};
#[cfg(feature = "precomputed-tables")]
use once_cell::sync::Lazy;
/// Lookup table containing precomputed values `[p, 2p, 3p, ..., 8p]`
#[derive(Copy, Clone, Default)]
struct LookupTable([ProjectivePoint; 8]);
impl From<&ProjectivePoint> for LookupTable {
fn from(p: &ProjectivePoint) -> Self {
let mut points = [*p; 8];
for j in 0..7 {
points[j + 1] = p + &points[j];
}
LookupTable(points)
}
}
impl LookupTable {
/// Given -8 <= x <= 8, returns x * p in constant time.
fn select(&self, x: i8) -> ProjectivePoint {
debug_assert!(x >= -8);
debug_assert!(x <= 8);
// Compute xabs = |x|
let xmask = x >> 7;
let xabs = (x + xmask) ^ xmask;
// Get an array element in constant time
let mut t = ProjectivePoint::IDENTITY;
for j in 1..9 {
let c = (xabs as u8).ct_eq(&(j as u8));
t.conditional_assign(&self.0[j - 1], c);
}
// Now t == |x| * p.
let neg_mask = Choice::from((xmask & 1) as u8);
t.conditional_assign(&-t, neg_mask);
// Now t == x * p.
t
}
}
const MINUS_LAMBDA: Scalar = Scalar::from_bytes_unchecked(&[
0xac, 0x9c, 0x52, 0xb3, 0x3f, 0xa3, 0xcf, 0x1f, 0x5a, 0xd9, 0xe3, 0xfd, 0x77, 0xed, 0x9b, 0xa4,
0xa8, 0x80, 0xb9, 0xfc, 0x8e, 0xc7, 0x39, 0xc2, 0xe0, 0xcf, 0xc8, 0x10, 0xb5, 0x12, 0x83, 0xcf,
]);
const MINUS_B1: Scalar = Scalar::from_bytes_unchecked(&[
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xe4, 0x43, 0x7e, 0xd6, 0x01, 0x0e, 0x88, 0x28, 0x6f, 0x54, 0x7f, 0xa9, 0x0a, 0xbf, 0xe4, 0xc3,
]);
const MINUS_B2: Scalar = Scalar::from_bytes_unchecked(&[
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0x8a, 0x28, 0x0a, 0xc5, 0x07, 0x74, 0x34, 0x6d, 0xd7, 0x65, 0xcd, 0xa8, 0x3d, 0xb1, 0x56, 0x2c,
]);
const G1: Scalar = Scalar::from_bytes_unchecked(&[
0x30, 0x86, 0xd2, 0x21, 0xa7, 0xd4, 0x6b, 0xcd, 0xe8, 0x6c, 0x90, 0xe4, 0x92, 0x84, 0xeb, 0x15,
0x3d, 0xaa, 0x8a, 0x14, 0x71, 0xe8, 0xca, 0x7f, 0xe8, 0x93, 0x20, 0x9a, 0x45, 0xdb, 0xb0, 0x31,
]);
const G2: Scalar = Scalar::from_bytes_unchecked(&[
0xe4, 0x43, 0x7e, 0xd6, 0x01, 0x0e, 0x88, 0x28, 0x6f, 0x54, 0x7f, 0xa9, 0x0a, 0xbf, 0xe4, 0xc4,
0x22, 0x12, 0x08, 0xac, 0x9d, 0xf5, 0x06, 0xc6, 0x15, 0x71, 0xb4, 0xae, 0x8a, 0xc4, 0x7f, 0x71,
]);
/*
* Proof for decompose_scalar's bounds.
*
* Let
* - epsilon1 = 2^256 * |g1/2^384 - b2/d|
* - epsilon2 = 2^256 * |g2/2^384 - (-b1)/d|
* - c1 = round(k*g1/2^384)
* - c2 = round(k*g2/2^384)
*
* Lemma 1: |c1 - k*b2/d| < 2^-1 + epsilon1
*
* |c1 - k*b2/d|
* =
* |c1 - k*g1/2^384 + k*g1/2^384 - k*b2/d|
* <= {triangle inequality}
* |c1 - k*g1/2^384| + |k*g1/2^384 - k*b2/d|
* =
* |c1 - k*g1/2^384| + k*|g1/2^384 - b2/d|
* < {rounding in c1 and 0 <= k < 2^256}
* 2^-1 + 2^256 * |g1/2^384 - b2/d|
* = {definition of epsilon1}
* 2^-1 + epsilon1
*
* Lemma 2: |c2 - k*(-b1)/d| < 2^-1 + epsilon2
*
* |c2 - k*(-b1)/d|
* =
* |c2 - k*g2/2^384 + k*g2/2^384 - k*(-b1)/d|
* <= {triangle inequality}
* |c2 - k*g2/2^384| + |k*g2/2^384 - k*(-b1)/d|
* =
* |c2 - k*g2/2^384| + k*|g2/2^384 - (-b1)/d|
* < {rounding in c2 and 0 <= k < 2^256}
* 2^-1 + 2^256 * |g2/2^384 - (-b1)/d|
* = {definition of epsilon2}
* 2^-1 + epsilon2
*
* Let
* - k1 = k - c1*a1 - c2*a2
* - k2 = - c1*b1 - c2*b2
*
* Lemma 3: |k1| < (a1 + a2 + 1)/2 < 2^128
*
* |k1|
* = {definition of k1}
* |k - c1*a1 - c2*a2|
* = {(a1*b2 - b1*a2)/n = 1}
* |k*(a1*b2 - b1*a2)/n - c1*a1 - c2*a2|
* =
* |a1*(k*b2/n - c1) + a2*(k*(-b1)/n - c2)|
* <= {triangle inequality}
* a1*|k*b2/n - c1| + a2*|k*(-b1)/n - c2|
* < {Lemma 1 and Lemma 2}
* a1*(2^-1 + epslion1) + a2*(2^-1 + epsilon2)
* < {rounding up to an integer}
* (a1 + a2 + 1)/2
* < {rounding up to a power of 2}
* 2^128
*
* Lemma 4: |k2| < (-b1 + b2)/2 + 1 < 2^128
*
* |k2|
* = {definition of k2}
* |- c1*a1 - c2*a2|
* = {(b1*b2 - b1*b2)/n = 0}
* |k*(b1*b2 - b1*b2)/n - c1*b1 - c2*b2|
* =
* |b1*(k*b2/n - c1) + b2*(k*(-b1)/n - c2)|
* <= {triangle inequality}
* (-b1)*|k*b2/n - c1| + b2*|k*(-b1)/n - c2|
* < {Lemma 1 and Lemma 2}
* (-b1)*(2^-1 + epslion1) + b2*(2^-1 + epsilon2)
* < {rounding up to an integer}
* (-b1 + b2)/2 + 1
* < {rounding up to a power of 2}
* 2^128
*
* Let
* - r2 = k2 mod n
* - r1 = k - r2*lambda mod n.
*
* Notice that r1 is defined such that r1 + r2 * lambda == k (mod n).
*
* Lemma 5: r1 == k1 mod n.
*
* r1
* == {definition of r1 and r2}
* k - k2*lambda
* == {definition of k2}
* k - (- c1*b1 - c2*b2)*lambda
* ==
* k + c1*b1*lambda + c2*b2*lambda
* == {a1 + b1*lambda == 0 mod n and a2 + b2*lambda == 0 mod n}
* k - c1*a1 - c2*a2
* == {definition of k1}
* k1
*
* From Lemma 3, Lemma 4, Lemma 5 and the definition of r2, we can conclude that
*
* - either r1 < 2^128 or -r1 mod n < 2^128
* - either r2 < 2^128 or -r2 mod n < 2^128.
*
* Q.E.D.
*/
/// Find r1 and r2 given k, such that r1 + r2 * lambda == k mod n.
fn decompose_scalar(k: &Scalar) -> (Scalar, Scalar) {
// these _vartime calls are constant time since the shift amount is constant
let c1 = WideScalar::mul_shift_vartime(k, &G1, 384) * MINUS_B1;
let c2 = WideScalar::mul_shift_vartime(k, &G2, 384) * MINUS_B2;
let r2 = c1 + c2;
let r1 = k + r2 * MINUS_LAMBDA;
(r1, r2)
}
// This needs to be an object to have Default implemented for it
// (required because it's used in static_map later)
// Otherwise we could just have a function returning an array.
#[derive(Copy, Clone)]
struct Radix16Decomposition<const D: usize>([i8; D]);
impl<const D: usize> Radix16Decomposition<D> {
/// Returns an object containing a decomposition
/// `[a_0, ..., a_D]` such that `sum(a_j * 2^(j * 4)) == x`,
/// and `-8 <= a_j <= 7`.
/// Assumes `x < 2^(4*(D-1))`.
fn new(x: &Scalar) -> Self {
debug_assert!((x >> (4 * (D - 1))).is_zero().unwrap_u8() == 1);
// The resulting decomposition can be negative, so, despite the limit on `x`,
// we need an additional byte to store the carry.
let mut output = [0i8; D];
// Step 1: change radix.
// Convert from radix 256 (bytes) to radix 16 (nibbles)
let bytes = x.to_bytes();
for i in 0..(D - 1) / 2 {
output[2 * i] = (bytes[31 - i] & 0xf) as i8;
output[2 * i + 1] = ((bytes[31 - i] >> 4) & 0xf) as i8;
}
// Step 2: recenter coefficients from [0,16) to [-8,8)
for i in 0..(D - 1) {
let carry = (output[i] + 8) >> 4;
output[i] -= carry << 4;
output[i + 1] += carry;
}
Self(output)
}
}
impl<const D: usize> Default for Radix16Decomposition<D> {
fn default() -> Self {
Self([0i8; D])
}
}
impl<const N: usize> LinearCombination<[(ProjectivePoint, Scalar); N]> for ProjectivePoint {
fn lincomb_ext(points_and_scalars: &[(ProjectivePoint, Scalar); N]) -> Self {
let mut tables = [(LookupTable::default(), LookupTable::default()); N];
let mut digits = [(
Radix16Decomposition::<33>::default(),
Radix16Decomposition::<33>::default(),
); N];
lincomb(points_and_scalars, &mut tables, &mut digits)
}
}
#[cfg(feature = "alloc")]
impl LinearCombination<[(ProjectivePoint, Scalar)]> for ProjectivePoint {
fn lincomb_ext(points_and_scalars: &[(ProjectivePoint, Scalar)]) -> Self {
let mut tables =
vec![(LookupTable::default(), LookupTable::default()); points_and_scalars.len()];
let mut digits = vec![
(
Radix16Decomposition::<33>::default(),
Radix16Decomposition::<33>::default(),
);
points_and_scalars.len()
];
lincomb(points_and_scalars, &mut tables, &mut digits)
}
}
fn lincomb(
xks: &[(ProjectivePoint, Scalar)],
tables: &mut [(LookupTable, LookupTable)],
digits: &mut [(Radix16Decomposition<33>, Radix16Decomposition<33>)],
) -> ProjectivePoint {
xks.iter().enumerate().for_each(|(i, (x, k))| {
let (r1, r2) = decompose_scalar(k);
let x_beta = x.endomorphism();
let (r1_sign, r2_sign) = (r1.is_high(), r2.is_high());
let (r1_c, r2_c) = (
Scalar::conditional_select(&r1, &-r1, r1_sign),
Scalar::conditional_select(&r2, &-r2, r2_sign),
);
tables[i] = (
LookupTable::from(&ProjectivePoint::conditional_select(x, &-*x, r1_sign)),
LookupTable::from(&ProjectivePoint::conditional_select(
&x_beta, &-x_beta, r2_sign,
)),
);
digits[i] = (
Radix16Decomposition::<33>::new(&r1_c),
Radix16Decomposition::<33>::new(&r2_c),
)
});
let mut acc = ProjectivePoint::IDENTITY;
for component in 0..xks.len() {
let (digit1, digit2) = digits[component];
let (table1, table2) = tables[component];
acc += &table1.select(digit1.0[32]);
acc += &table2.select(digit2.0[32]);
}
for i in (0..32).rev() {
for _j in 0..4 {
acc = acc.double();
}
for component in 0..xks.len() {
let (digit1, digit2) = digits[component];
let (table1, table2) = tables[component];
acc += &table1.select(digit1.0[i]);
acc += &table2.select(digit2.0[i]);
}
}
acc
}
/// Lazily computed basepoint table.
#[cfg(feature = "precomputed-tables")]
static GEN_LOOKUP_TABLE: Lazy<[LookupTable; 33]> = Lazy::new(precompute_gen_lookup_table);
#[cfg(feature = "precomputed-tables")]
fn precompute_gen_lookup_table() -> [LookupTable; 33] {
let mut gen = ProjectivePoint::GENERATOR;
let mut res = [LookupTable::default(); 33];
for i in 0..33 {
res[i] = LookupTable::from(&gen);
// We are storing tables spaced by two radix steps,
// to decrease the size of the precomputed data.
for _ in 0..8 {
gen = gen.double();
}
}
res
}
impl MulByGenerator for ProjectivePoint {
/// Calculates `k * G`, where `G` is the generator.
#[cfg(not(feature = "precomputed-tables"))]
fn mul_by_generator(k: &Scalar) -> ProjectivePoint {
ProjectivePoint::GENERATOR * k
}
/// Calculates `k * G`, where `G` is the generator.
#[cfg(feature = "precomputed-tables")]
fn mul_by_generator(k: &Scalar) -> ProjectivePoint {
let digits = Radix16Decomposition::<65>::new(k);
let table = *GEN_LOOKUP_TABLE;
let mut acc = table[32].select(digits.0[64]);
let mut acc2 = ProjectivePoint::IDENTITY;
for i in (0..32).rev() {
acc2 += &table[i].select(digits.0[i * 2 + 1]);
acc += &table[i].select(digits.0[i * 2]);
}
// This is the price of halving the precomputed table size (from 60kb to 30kb)
// The performance hit is minor, about 3%.
for _ in 0..4 {
acc2 = acc2.double();
}
acc + acc2
}
}
#[inline(always)]
fn mul(x: &ProjectivePoint, k: &Scalar) -> ProjectivePoint {
ProjectivePoint::lincomb_ext(&[(*x, *k)])
}
impl Mul<Scalar> for ProjectivePoint {
type Output = ProjectivePoint;
fn mul(self, other: Scalar) -> ProjectivePoint {
mul(&self, &other)
}
}
impl Mul<&Scalar> for &ProjectivePoint {
type Output = ProjectivePoint;
fn mul(self, other: &Scalar) -> ProjectivePoint {
mul(self, other)
}
}
impl Mul<&Scalar> for ProjectivePoint {
type Output = ProjectivePoint;
fn mul(self, other: &Scalar) -> ProjectivePoint {
mul(&self, other)
}
}
impl MulAssign<Scalar> for ProjectivePoint {
fn mul_assign(&mut self, rhs: Scalar) {
*self = mul(self, &rhs);
}
}
impl MulAssign<&Scalar> for ProjectivePoint {
fn mul_assign(&mut self, rhs: &Scalar) {
*self = mul(self, rhs);
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::arithmetic::{ProjectivePoint, Scalar};
use elliptic_curve::{
ops::{LinearCombination as _, MulByGenerator},
rand_core::OsRng,
Field, Group,
};
#[test]
fn test_lincomb() {
let x = ProjectivePoint::random(&mut OsRng);
let y = ProjectivePoint::random(&mut OsRng);
let k = Scalar::random(&mut OsRng);
let l = Scalar::random(&mut OsRng);
let reference = &x * &k + &y * &l;
let test = ProjectivePoint::lincomb(&x, &k, &y, &l);
assert_eq!(reference, test);
}
#[test]
fn test_mul_by_generator() {
let k = Scalar::random(&mut OsRng);
let reference = &ProjectivePoint::GENERATOR * &k;
let test = ProjectivePoint::mul_by_generator(&k);
assert_eq!(reference, test);
}
#[cfg(feature = "alloc")]
#[test]
fn test_lincomb_slice() {
let x = ProjectivePoint::random(&mut OsRng);
let y = ProjectivePoint::random(&mut OsRng);
let k = Scalar::random(&mut OsRng);
let l = Scalar::random(&mut OsRng);
let reference = &x * &k + &y * &l;
let points_and_scalars = vec![(x, k), (y, l)];
let test = ProjectivePoint::lincomb_ext(points_and_scalars.as_slice());
assert_eq!(reference, test);
}
}