k256/arithmetic/field/field_5x52.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
//! Field element modulo the curve internal modulus using 64-bit limbs.
//! Inspired by the implementation in <https://github.com/bitcoin-core/secp256k1>
use crate::FieldBytes;
use elliptic_curve::{
subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption},
zeroize::Zeroize,
};
/// Scalars modulo SECP256k1 modulus (2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1).
/// Uses 5 64-bit limbs (little-endian), where in the normalized form
/// first 4 contain 52 bits of the value each, and the last one contains 48 bits.
/// CurveArithmetic operations can be done without modulo reduction for some time,
/// using the remaining overflow bits.
#[derive(Clone, Copy, Debug)]
pub struct FieldElement5x52(pub(crate) [u64; 5]);
impl FieldElement5x52 {
/// Zero element.
pub const ZERO: Self = Self([0, 0, 0, 0, 0]);
/// Multiplicative identity.
pub const ONE: Self = Self([1, 0, 0, 0, 0]);
/// Attempts to parse the given byte array as an SEC1-encoded field element.
/// Does not check the result for being in the correct range.
pub(crate) const fn from_bytes_unchecked(bytes: &[u8; 32]) -> Self {
let w0 = (bytes[31] as u64)
| ((bytes[30] as u64) << 8)
| ((bytes[29] as u64) << 16)
| ((bytes[28] as u64) << 24)
| ((bytes[27] as u64) << 32)
| ((bytes[26] as u64) << 40)
| (((bytes[25] & 0xFu8) as u64) << 48);
let w1 = ((bytes[25] >> 4) as u64)
| ((bytes[24] as u64) << 4)
| ((bytes[23] as u64) << 12)
| ((bytes[22] as u64) << 20)
| ((bytes[21] as u64) << 28)
| ((bytes[20] as u64) << 36)
| ((bytes[19] as u64) << 44);
let w2 = (bytes[18] as u64)
| ((bytes[17] as u64) << 8)
| ((bytes[16] as u64) << 16)
| ((bytes[15] as u64) << 24)
| ((bytes[14] as u64) << 32)
| ((bytes[13] as u64) << 40)
| (((bytes[12] & 0xFu8) as u64) << 48);
let w3 = ((bytes[12] >> 4) as u64)
| ((bytes[11] as u64) << 4)
| ((bytes[10] as u64) << 12)
| ((bytes[9] as u64) << 20)
| ((bytes[8] as u64) << 28)
| ((bytes[7] as u64) << 36)
| ((bytes[6] as u64) << 44);
let w4 = (bytes[5] as u64)
| ((bytes[4] as u64) << 8)
| ((bytes[3] as u64) << 16)
| ((bytes[2] as u64) << 24)
| ((bytes[1] as u64) << 32)
| ((bytes[0] as u64) << 40);
Self([w0, w1, w2, w3, w4])
}
/// Attempts to parse the given byte array as an SEC1-encoded field element.
///
/// Returns None if the byte array does not contain a big-endian integer in the range
/// [0, p).
#[inline]
pub fn from_bytes(bytes: &FieldBytes) -> CtOption<Self> {
let res = Self::from_bytes_unchecked(bytes.as_ref());
let overflow = res.get_overflow();
CtOption::new(res, !overflow)
}
pub const fn from_u64(val: u64) -> Self {
let w0 = val & 0xFFFFFFFFFFFFF;
let w1 = val >> 52;
Self([w0, w1, 0, 0, 0])
}
/// Returns the SEC1 encoding of this field element.
pub fn to_bytes(self) -> FieldBytes {
let mut ret = FieldBytes::default();
ret[0] = (self.0[4] >> 40) as u8;
ret[1] = (self.0[4] >> 32) as u8;
ret[2] = (self.0[4] >> 24) as u8;
ret[3] = (self.0[4] >> 16) as u8;
ret[4] = (self.0[4] >> 8) as u8;
ret[5] = self.0[4] as u8;
ret[6] = (self.0[3] >> 44) as u8;
ret[7] = (self.0[3] >> 36) as u8;
ret[8] = (self.0[3] >> 28) as u8;
ret[9] = (self.0[3] >> 20) as u8;
ret[10] = (self.0[3] >> 12) as u8;
ret[11] = (self.0[3] >> 4) as u8;
ret[12] = ((self.0[2] >> 48) as u8 & 0xFu8) | ((self.0[3] as u8 & 0xFu8) << 4);
ret[13] = (self.0[2] >> 40) as u8;
ret[14] = (self.0[2] >> 32) as u8;
ret[15] = (self.0[2] >> 24) as u8;
ret[16] = (self.0[2] >> 16) as u8;
ret[17] = (self.0[2] >> 8) as u8;
ret[18] = self.0[2] as u8;
ret[19] = (self.0[1] >> 44) as u8;
ret[20] = (self.0[1] >> 36) as u8;
ret[21] = (self.0[1] >> 28) as u8;
ret[22] = (self.0[1] >> 20) as u8;
ret[23] = (self.0[1] >> 12) as u8;
ret[24] = (self.0[1] >> 4) as u8;
ret[25] = ((self.0[0] >> 48) as u8 & 0xFu8) | ((self.0[1] as u8 & 0xFu8) << 4);
ret[26] = (self.0[0] >> 40) as u8;
ret[27] = (self.0[0] >> 32) as u8;
ret[28] = (self.0[0] >> 24) as u8;
ret[29] = (self.0[0] >> 16) as u8;
ret[30] = (self.0[0] >> 8) as u8;
ret[31] = self.0[0] as u8;
ret
}
/// Adds `x * (2^256 - modulus)`.
fn add_modulus_correction(&self, x: u64) -> Self {
// add (2^256 - modulus) * x to the first limb
let t0 = self.0[0] + x * 0x1000003D1u64;
// Propagate excess bits up the limbs
let t1 = self.0[1] + (t0 >> 52);
let t0 = t0 & 0xFFFFFFFFFFFFFu64;
let t2 = self.0[2] + (t1 >> 52);
let t1 = t1 & 0xFFFFFFFFFFFFFu64;
let t3 = self.0[3] + (t2 >> 52);
let t2 = t2 & 0xFFFFFFFFFFFFFu64;
let t4 = self.0[4] + (t3 >> 52);
let t3 = t3 & 0xFFFFFFFFFFFFFu64;
Self([t0, t1, t2, t3, t4])
}
/// Subtracts the overflow in the last limb and return it with the new field element.
/// Equivalent to subtracting a multiple of 2^256.
fn subtract_modulus_approximation(&self) -> (Self, u64) {
let x = self.0[4] >> 48;
let t4 = self.0[4] & 0x0FFFFFFFFFFFFu64; // equivalent to self -= 2^256 * x
(Self([self.0[0], self.0[1], self.0[2], self.0[3], t4]), x)
}
/// Checks if the field element is greater or equal to the modulus.
fn get_overflow(&self) -> Choice {
let m = self.0[1] & self.0[2] & self.0[3];
let x = (self.0[4] >> 48 != 0)
| ((self.0[4] == 0x0FFFFFFFFFFFFu64)
& (m == 0xFFFFFFFFFFFFFu64)
& (self.0[0] >= 0xFFFFEFFFFFC2Fu64));
Choice::from(x as u8)
}
/// Brings the field element's magnitude to 1, but does not necessarily normalize it.
pub fn normalize_weak(&self) -> Self {
// Reduce t4 at the start so there will be at most a single carry from the first pass
let (t, x) = self.subtract_modulus_approximation();
// The first pass ensures the magnitude is 1, ...
let res = t.add_modulus_correction(x);
// ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element)
debug_assert!(res.0[4] >> 49 == 0);
res
}
/// Fully normalizes the field element.
/// That is, first four limbs are at most 52 bit large, the last limb is at most 48 bit large,
/// and the value is less than the modulus.
pub fn normalize(&self) -> Self {
let res = self.normalize_weak();
// At most a single final reduction is needed;
// check if the value is >= the field characteristic
let overflow = res.get_overflow();
// Apply the final reduction (for constant-time behaviour, we do it always)
let res_corrected = res.add_modulus_correction(1u64);
// Mask off the possible multiple of 2^256 from the final reduction
let (res_corrected, x) = res_corrected.subtract_modulus_approximation();
// If the last limb didn't carry to bit 48 already,
// then it should have after any final reduction
debug_assert!(x == (overflow.unwrap_u8() as u64));
Self::conditional_select(&res, &res_corrected, overflow)
}
/// Checks if the field element becomes zero if normalized.
pub fn normalizes_to_zero(&self) -> Choice {
let res = self.normalize_weak();
let t0 = res.0[0];
let t1 = res.0[1];
let t2 = res.0[2];
let t3 = res.0[3];
let t4 = res.0[4];
// z0 tracks a possible raw value of 0, z1 tracks a possible raw value of the modulus
let z0 = t0 | t1 | t2 | t3 | t4;
let z1 = (t0 ^ 0x1000003D0u64) & t1 & t2 & t3 & (t4 ^ 0xF000000000000u64);
Choice::from(((z0 == 0) | (z1 == 0xFFFFFFFFFFFFFu64)) as u8)
}
/// Determine if this `FieldElement5x52` is zero.
///
/// # Returns
///
/// If zero, return `Choice(1)`. Otherwise, return `Choice(0)`.
pub fn is_zero(&self) -> Choice {
Choice::from(((self.0[0] | self.0[1] | self.0[2] | self.0[3] | self.0[4]) == 0) as u8)
}
/// Determine if this `FieldElement5x52` is odd in the SEC1 sense: `self mod 2 == 1`.
///
/// # Returns
///
/// If odd, return `Choice(1)`. Otherwise, return `Choice(0)`.
pub fn is_odd(&self) -> Choice {
(self.0[0] as u8 & 1).into()
}
/// The maximum number `m` for which `0xFFFFFFFFFFFFF * 2 * (m + 1) < 2^64`
#[cfg(debug_assertions)]
pub const fn max_magnitude() -> u32 {
2047u32
}
/// Returns -self, treating it as a value of given magnitude.
/// The provided magnitude must be equal or greater than the actual magnitude of `self`.
/// Raises the magnitude by 1.
pub const fn negate(&self, magnitude: u32) -> Self {
let m = (magnitude + 1) as u64;
let r0 = 0xFFFFEFFFFFC2Fu64 * 2 * m - self.0[0];
let r1 = 0xFFFFFFFFFFFFFu64 * 2 * m - self.0[1];
let r2 = 0xFFFFFFFFFFFFFu64 * 2 * m - self.0[2];
let r3 = 0xFFFFFFFFFFFFFu64 * 2 * m - self.0[3];
let r4 = 0x0FFFFFFFFFFFFu64 * 2 * m - self.0[4];
Self([r0, r1, r2, r3, r4])
}
/// Returns self + rhs mod p.
/// Sums the magnitudes.
pub const fn add(&self, rhs: &Self) -> Self {
Self([
self.0[0] + rhs.0[0],
self.0[1] + rhs.0[1],
self.0[2] + rhs.0[2],
self.0[3] + rhs.0[3],
self.0[4] + rhs.0[4],
])
}
/// Multiplies by a single-limb integer.
/// Multiplies the magnitude by the same value.
pub const fn mul_single(&self, rhs: u32) -> Self {
let rhs_u64 = rhs as u64;
Self([
self.0[0] * rhs_u64,
self.0[1] * rhs_u64,
self.0[2] * rhs_u64,
self.0[3] * rhs_u64,
self.0[4] * rhs_u64,
])
}
#[inline(always)]
fn mul_inner(&self, rhs: &Self) -> Self {
/*
`square()` is just `mul()` with equal arguments. Rust compiler is smart enough
to do all the necessary optimizations for this case, but it needs to have this information
inside a function. If a function is just *called* with the same arguments,
this information cannot be used, so the function must be inlined while using the same arguments.
Now `mul()` is quite long and therefore expensive to inline. So we have an inner (inlined)
function, that is used inside `mul()` and `square()`, and when it is used with the same
arguments in `square()`, compiler is able to use that fact after inlining.
*/
let a0 = self.0[0] as u128;
let a1 = self.0[1] as u128;
let a2 = self.0[2] as u128;
let a3 = self.0[3] as u128;
let a4 = self.0[4] as u128;
let b0 = rhs.0[0] as u128;
let b1 = rhs.0[1] as u128;
let b2 = rhs.0[2] as u128;
let b3 = rhs.0[3] as u128;
let b4 = rhs.0[4] as u128;
let m = 0xFFFFFFFFFFFFFu128;
let r = 0x1000003D10u128;
debug_assert!(a0 >> 56 == 0);
debug_assert!(a1 >> 56 == 0);
debug_assert!(a2 >> 56 == 0);
debug_assert!(a3 >> 56 == 0);
debug_assert!(a4 >> 52 == 0);
debug_assert!(b0 >> 56 == 0);
debug_assert!(b1 >> 56 == 0);
debug_assert!(b2 >> 56 == 0);
debug_assert!(b3 >> 56 == 0);
debug_assert!(b4 >> 52 == 0);
// [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
// for 0 <= x <= 4, px is a shorthand for sum(a[i]*b[x-i], i=0..x).
// for 4 <= x <= 8, px is a shorthand for sum(a[i]*b[x-i], i=(x-4)..4)
// Note that [x 0 0 0 0 0] = [x*r].
let mut d = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0;
debug_assert!(d >> 114 == 0);
// [d 0 0 0] = [p3 0 0 0]
let mut c = a4 * b4;
debug_assert!(c >> 112 == 0);
// [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0]
d += (c & m) * r;
c >>= 52;
debug_assert!(d >> 115 == 0);
debug_assert!(c >> 60 == 0);
let c64 = c as u64;
// [c 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0]
let t3 = (d & m) as u64;
d >>= 52;
debug_assert!(t3 >> 52 == 0);
debug_assert!(d >> 63 == 0);
let d64 = d as u64;
// [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0]
d = d64 as u128 + a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0;
debug_assert!(d >> 115 == 0);
// [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0]
d += c64 as u128 * r;
debug_assert!(d >> 116 == 0);
// [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0]
let t4 = (d & m) as u64;
d >>= 52;
debug_assert!(t4 >> 52 == 0);
debug_assert!(d >> 64 == 0);
let d64 = d as u64;
// [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0]
let tx = t4 >> 48;
let t4 = t4 & ((m as u64) >> 4);
debug_assert!(tx >> 4 == 0);
debug_assert!(t4 >> 48 == 0);
// [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0]
c = a0 * b0;
debug_assert!(c >> 112 == 0);
// [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0]
d = d64 as u128 + a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1;
debug_assert!(d >> 115 == 0);
// [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0]
let u0 = (d & m) as u64;
d >>= 52;
debug_assert!(u0 >> 52 == 0);
debug_assert!(d >> 63 == 0);
let d64 = d as u64;
// [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0]
// [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0]
let u0 = (u0 << 4) | tx;
debug_assert!(u0 >> 56 == 0);
// [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0]
c += u0 as u128 * ((r as u64) >> 4) as u128;
debug_assert!(c >> 115 == 0);
// [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0]
let r0 = (c & m) as u64;
c >>= 52;
debug_assert!(r0 >> 52 == 0);
debug_assert!(c >> 61 == 0);
let c64 = c as u64;
// [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0]
c = c64 as u128 + a0 * b1 + a1 * b0;
debug_assert!(c >> 114 == 0);
// [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0]
d = d64 as u128 + a2 * b4 + a3 * b3 + a4 * b2;
debug_assert!(d >> 114 == 0);
// [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0]
c += (d & m) * r;
d >>= 52;
debug_assert!(c >> 115 == 0);
debug_assert!(d >> 62 == 0);
let d64 = d as u64;
// [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0]
let r1 = (c & m) as u64;
c >>= 52;
debug_assert!(r1 >> 52 == 0);
debug_assert!(c >> 63 == 0);
let c64 = c as u64;
// [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0]
c = c64 as u128 + a0 * b2 + a1 * b1 + a2 * b0;
debug_assert!(c >> 114 == 0);
// [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0]
d = d64 as u128 + a3 * b4 + a4 * b3;
debug_assert!(d >> 114 == 0);
// [d 0 0 t4 t3 c t1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
c += (d & m) * r;
d >>= 52;
debug_assert!(c >> 115 == 0);
debug_assert!(d >> 62 == 0);
let d64 = d as u64;
// [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
// [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
let r2 = (c & m) as u64;
c >>= 52;
debug_assert!(r2 >> 52 == 0);
debug_assert!(c >> 63 == 0);
let c64 = c as u64;
// [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
c = c64 as u128 + (d64 as u128) * r + t3 as u128;
debug_assert!(c >> 100 == 0);
// [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
let r3 = (c & m) as u64;
c >>= 52;
debug_assert!(r3 >> 52 == 0);
debug_assert!(c >> 48 == 0);
let c64 = c as u64;
// [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
c = c64 as u128 + t4 as u128;
debug_assert!(c >> 49 == 0);
// [c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
let r4 = c as u64;
debug_assert!(r4 >> 49 == 0);
// [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
Self([r0, r1, r2, r3, r4])
}
/// Returns self * rhs mod p
/// Brings the magnitude to 1 (but doesn't normalize the result).
/// The magnitudes of arguments should be <= 8.
#[inline(always)]
pub fn mul(&self, rhs: &Self) -> Self {
self.mul_inner(rhs)
}
/// Returns self * self
/// Brings the magnitude to 1 (but doesn't normalize the result).
/// The magnitudes of arguments should be <= 8.
pub fn square(&self) -> Self {
self.mul_inner(self)
}
}
impl Default for FieldElement5x52 {
fn default() -> Self {
Self::ZERO
}
}
impl ConditionallySelectable for FieldElement5x52 {
#[inline(always)]
fn conditional_select(
a: &FieldElement5x52,
b: &FieldElement5x52,
choice: Choice,
) -> FieldElement5x52 {
FieldElement5x52([
u64::conditional_select(&a.0[0], &b.0[0], choice),
u64::conditional_select(&a.0[1], &b.0[1], choice),
u64::conditional_select(&a.0[2], &b.0[2], choice),
u64::conditional_select(&a.0[3], &b.0[3], choice),
u64::conditional_select(&a.0[4], &b.0[4], choice),
])
}
}
impl ConstantTimeEq for FieldElement5x52 {
fn ct_eq(&self, other: &Self) -> Choice {
self.0[0].ct_eq(&other.0[0])
& self.0[1].ct_eq(&other.0[1])
& self.0[2].ct_eq(&other.0[2])
& self.0[3].ct_eq(&other.0[3])
& self.0[4].ct_eq(&other.0[4])
}
}
impl Zeroize for FieldElement5x52 {
fn zeroize(&mut self) {
self.0.zeroize();
}
}
#[cfg(test)]
mod tests {
use super::FieldElement5x52;
#[test]
fn overflow_check_after_weak_normalize() {
// A regression test for a missing condition in `get_overflow()`.
// The condition was only missing in the 32-bit case,
// but we're adding a 64-bit testcase nevertheless.
//
// In `normalize()`, after the `normalize_weak()` call,
// the excess bit from the limb 0 is propagated all the way to the last limb.
// This constitutes an overflow, since the last bit becomes equal to (1 << 22),
// that is 23 bits in total.
// When `get_overflow()` is called afterwards, this was not detected,
// since the corresponding condition (checking for the last limb being > 22 bits)
// was missing.
// This resulted in a debug assert firing later.
//
// This is essentially 2^256
let z = FieldElement5x52([
(1 << 52), // an excess bit here
// the remaining full-sized limbs are at top normalized capacity
(1 << 52) - 1,
(1 << 52) - 1,
(1 << 52) - 1,
// the last limb is also at top normalized capacity
(1 << 48) - 1,
]);
// Used to fail here (debug_assert firing because overflow happened at an unexpected place):
let z_normalized = z.normalize();
// Properly normalized result, just to be sure
// The initial number is 2^256, so the result is 0x1000003d1
let z_reference = FieldElement5x52([0x1000003d1, 0, 0, 0, 0]);
assert_eq!(z_normalized.0, z_reference.0);
}
}