k256/arithmetic/field/
field_5x52.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
//! Field element modulo the curve internal modulus using 64-bit limbs.
//! Inspired by the implementation in <https://github.com/bitcoin-core/secp256k1>

use crate::FieldBytes;
use elliptic_curve::{
    subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption},
    zeroize::Zeroize,
};

/// Scalars modulo SECP256k1 modulus (2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1).
/// Uses 5 64-bit limbs (little-endian), where in the normalized form
/// first 4 contain 52 bits of the value each, and the last one contains 48 bits.
/// CurveArithmetic operations can be done without modulo reduction for some time,
/// using the remaining overflow bits.
#[derive(Clone, Copy, Debug)]
pub struct FieldElement5x52(pub(crate) [u64; 5]);

impl FieldElement5x52 {
    /// Zero element.
    pub const ZERO: Self = Self([0, 0, 0, 0, 0]);

    /// Multiplicative identity.
    pub const ONE: Self = Self([1, 0, 0, 0, 0]);

    /// Attempts to parse the given byte array as an SEC1-encoded field element.
    /// Does not check the result for being in the correct range.
    pub(crate) const fn from_bytes_unchecked(bytes: &[u8; 32]) -> Self {
        let w0 = (bytes[31] as u64)
            | ((bytes[30] as u64) << 8)
            | ((bytes[29] as u64) << 16)
            | ((bytes[28] as u64) << 24)
            | ((bytes[27] as u64) << 32)
            | ((bytes[26] as u64) << 40)
            | (((bytes[25] & 0xFu8) as u64) << 48);

        let w1 = ((bytes[25] >> 4) as u64)
            | ((bytes[24] as u64) << 4)
            | ((bytes[23] as u64) << 12)
            | ((bytes[22] as u64) << 20)
            | ((bytes[21] as u64) << 28)
            | ((bytes[20] as u64) << 36)
            | ((bytes[19] as u64) << 44);

        let w2 = (bytes[18] as u64)
            | ((bytes[17] as u64) << 8)
            | ((bytes[16] as u64) << 16)
            | ((bytes[15] as u64) << 24)
            | ((bytes[14] as u64) << 32)
            | ((bytes[13] as u64) << 40)
            | (((bytes[12] & 0xFu8) as u64) << 48);

        let w3 = ((bytes[12] >> 4) as u64)
            | ((bytes[11] as u64) << 4)
            | ((bytes[10] as u64) << 12)
            | ((bytes[9] as u64) << 20)
            | ((bytes[8] as u64) << 28)
            | ((bytes[7] as u64) << 36)
            | ((bytes[6] as u64) << 44);

        let w4 = (bytes[5] as u64)
            | ((bytes[4] as u64) << 8)
            | ((bytes[3] as u64) << 16)
            | ((bytes[2] as u64) << 24)
            | ((bytes[1] as u64) << 32)
            | ((bytes[0] as u64) << 40);

        Self([w0, w1, w2, w3, w4])
    }

    /// Attempts to parse the given byte array as an SEC1-encoded field element.
    ///
    /// Returns None if the byte array does not contain a big-endian integer in the range
    /// [0, p).
    #[inline]
    pub fn from_bytes(bytes: &FieldBytes) -> CtOption<Self> {
        let res = Self::from_bytes_unchecked(bytes.as_ref());
        let overflow = res.get_overflow();
        CtOption::new(res, !overflow)
    }

    pub const fn from_u64(val: u64) -> Self {
        let w0 = val & 0xFFFFFFFFFFFFF;
        let w1 = val >> 52;
        Self([w0, w1, 0, 0, 0])
    }

    /// Returns the SEC1 encoding of this field element.
    pub fn to_bytes(self) -> FieldBytes {
        let mut ret = FieldBytes::default();
        ret[0] = (self.0[4] >> 40) as u8;
        ret[1] = (self.0[4] >> 32) as u8;
        ret[2] = (self.0[4] >> 24) as u8;
        ret[3] = (self.0[4] >> 16) as u8;
        ret[4] = (self.0[4] >> 8) as u8;
        ret[5] = self.0[4] as u8;
        ret[6] = (self.0[3] >> 44) as u8;
        ret[7] = (self.0[3] >> 36) as u8;
        ret[8] = (self.0[3] >> 28) as u8;
        ret[9] = (self.0[3] >> 20) as u8;
        ret[10] = (self.0[3] >> 12) as u8;
        ret[11] = (self.0[3] >> 4) as u8;
        ret[12] = ((self.0[2] >> 48) as u8 & 0xFu8) | ((self.0[3] as u8 & 0xFu8) << 4);
        ret[13] = (self.0[2] >> 40) as u8;
        ret[14] = (self.0[2] >> 32) as u8;
        ret[15] = (self.0[2] >> 24) as u8;
        ret[16] = (self.0[2] >> 16) as u8;
        ret[17] = (self.0[2] >> 8) as u8;
        ret[18] = self.0[2] as u8;
        ret[19] = (self.0[1] >> 44) as u8;
        ret[20] = (self.0[1] >> 36) as u8;
        ret[21] = (self.0[1] >> 28) as u8;
        ret[22] = (self.0[1] >> 20) as u8;
        ret[23] = (self.0[1] >> 12) as u8;
        ret[24] = (self.0[1] >> 4) as u8;
        ret[25] = ((self.0[0] >> 48) as u8 & 0xFu8) | ((self.0[1] as u8 & 0xFu8) << 4);
        ret[26] = (self.0[0] >> 40) as u8;
        ret[27] = (self.0[0] >> 32) as u8;
        ret[28] = (self.0[0] >> 24) as u8;
        ret[29] = (self.0[0] >> 16) as u8;
        ret[30] = (self.0[0] >> 8) as u8;
        ret[31] = self.0[0] as u8;
        ret
    }

    /// Adds `x * (2^256 - modulus)`.
    fn add_modulus_correction(&self, x: u64) -> Self {
        // add (2^256 - modulus) * x to the first limb
        let t0 = self.0[0] + x * 0x1000003D1u64;

        // Propagate excess bits up the limbs
        let t1 = self.0[1] + (t0 >> 52);
        let t0 = t0 & 0xFFFFFFFFFFFFFu64;

        let t2 = self.0[2] + (t1 >> 52);
        let t1 = t1 & 0xFFFFFFFFFFFFFu64;

        let t3 = self.0[3] + (t2 >> 52);
        let t2 = t2 & 0xFFFFFFFFFFFFFu64;

        let t4 = self.0[4] + (t3 >> 52);
        let t3 = t3 & 0xFFFFFFFFFFFFFu64;

        Self([t0, t1, t2, t3, t4])
    }

    /// Subtracts the overflow in the last limb and return it with the new field element.
    /// Equivalent to subtracting a multiple of 2^256.
    fn subtract_modulus_approximation(&self) -> (Self, u64) {
        let x = self.0[4] >> 48;
        let t4 = self.0[4] & 0x0FFFFFFFFFFFFu64; // equivalent to self -= 2^256 * x
        (Self([self.0[0], self.0[1], self.0[2], self.0[3], t4]), x)
    }

    /// Checks if the field element is greater or equal to the modulus.
    fn get_overflow(&self) -> Choice {
        let m = self.0[1] & self.0[2] & self.0[3];
        let x = (self.0[4] >> 48 != 0)
            | ((self.0[4] == 0x0FFFFFFFFFFFFu64)
                & (m == 0xFFFFFFFFFFFFFu64)
                & (self.0[0] >= 0xFFFFEFFFFFC2Fu64));
        Choice::from(x as u8)
    }

    /// Brings the field element's magnitude to 1, but does not necessarily normalize it.
    pub fn normalize_weak(&self) -> Self {
        // Reduce t4 at the start so there will be at most a single carry from the first pass
        let (t, x) = self.subtract_modulus_approximation();

        // The first pass ensures the magnitude is 1, ...
        let res = t.add_modulus_correction(x);

        // ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element)
        debug_assert!(res.0[4] >> 49 == 0);

        res
    }

    /// Fully normalizes the field element.
    /// That is, first four limbs are at most 52 bit large, the last limb is at most 48 bit large,
    /// and the value is less than the modulus.
    pub fn normalize(&self) -> Self {
        let res = self.normalize_weak();

        // At most a single final reduction is needed;
        // check if the value is >= the field characteristic
        let overflow = res.get_overflow();

        // Apply the final reduction (for constant-time behaviour, we do it always)
        let res_corrected = res.add_modulus_correction(1u64);
        // Mask off the possible multiple of 2^256 from the final reduction
        let (res_corrected, x) = res_corrected.subtract_modulus_approximation();

        // If the last limb didn't carry to bit 48 already,
        // then it should have after any final reduction
        debug_assert!(x == (overflow.unwrap_u8() as u64));

        Self::conditional_select(&res, &res_corrected, overflow)
    }

    /// Checks if the field element becomes zero if normalized.
    pub fn normalizes_to_zero(&self) -> Choice {
        let res = self.normalize_weak();

        let t0 = res.0[0];
        let t1 = res.0[1];
        let t2 = res.0[2];
        let t3 = res.0[3];
        let t4 = res.0[4];

        // z0 tracks a possible raw value of 0, z1 tracks a possible raw value of the modulus
        let z0 = t0 | t1 | t2 | t3 | t4;
        let z1 = (t0 ^ 0x1000003D0u64) & t1 & t2 & t3 & (t4 ^ 0xF000000000000u64);

        Choice::from(((z0 == 0) | (z1 == 0xFFFFFFFFFFFFFu64)) as u8)
    }

    /// Determine if this `FieldElement5x52` is zero.
    ///
    /// # Returns
    ///
    /// If zero, return `Choice(1)`.  Otherwise, return `Choice(0)`.
    pub fn is_zero(&self) -> Choice {
        Choice::from(((self.0[0] | self.0[1] | self.0[2] | self.0[3] | self.0[4]) == 0) as u8)
    }

    /// Determine if this `FieldElement5x52` is odd in the SEC1 sense: `self mod 2 == 1`.
    ///
    /// # Returns
    ///
    /// If odd, return `Choice(1)`.  Otherwise, return `Choice(0)`.
    pub fn is_odd(&self) -> Choice {
        (self.0[0] as u8 & 1).into()
    }

    /// The maximum number `m` for which `0xFFFFFFFFFFFFF * 2 * (m + 1) < 2^64`
    #[cfg(debug_assertions)]
    pub const fn max_magnitude() -> u32 {
        2047u32
    }

    /// Returns -self, treating it as a value of given magnitude.
    /// The provided magnitude must be equal or greater than the actual magnitude of `self`.
    /// Raises the magnitude by 1.
    pub const fn negate(&self, magnitude: u32) -> Self {
        let m = (magnitude + 1) as u64;
        let r0 = 0xFFFFEFFFFFC2Fu64 * 2 * m - self.0[0];
        let r1 = 0xFFFFFFFFFFFFFu64 * 2 * m - self.0[1];
        let r2 = 0xFFFFFFFFFFFFFu64 * 2 * m - self.0[2];
        let r3 = 0xFFFFFFFFFFFFFu64 * 2 * m - self.0[3];
        let r4 = 0x0FFFFFFFFFFFFu64 * 2 * m - self.0[4];
        Self([r0, r1, r2, r3, r4])
    }

    /// Returns self + rhs mod p.
    /// Sums the magnitudes.
    pub const fn add(&self, rhs: &Self) -> Self {
        Self([
            self.0[0] + rhs.0[0],
            self.0[1] + rhs.0[1],
            self.0[2] + rhs.0[2],
            self.0[3] + rhs.0[3],
            self.0[4] + rhs.0[4],
        ])
    }

    /// Multiplies by a single-limb integer.
    /// Multiplies the magnitude by the same value.
    pub const fn mul_single(&self, rhs: u32) -> Self {
        let rhs_u64 = rhs as u64;
        Self([
            self.0[0] * rhs_u64,
            self.0[1] * rhs_u64,
            self.0[2] * rhs_u64,
            self.0[3] * rhs_u64,
            self.0[4] * rhs_u64,
        ])
    }

    #[inline(always)]
    fn mul_inner(&self, rhs: &Self) -> Self {
        /*
        `square()` is just `mul()` with equal arguments. Rust compiler is smart enough
        to do all the necessary optimizations for this case, but it needs to have this information
        inside a function. If a function is just *called* with the same arguments,
        this information cannot be used, so the function must be inlined while using the same arguments.

        Now `mul()` is quite long and therefore expensive to inline. So we have an inner (inlined)
        function, that is used inside `mul()` and `square()`, and when it is used with the same
        arguments in `square()`, compiler is able to use that fact after inlining.
        */

        let a0 = self.0[0] as u128;
        let a1 = self.0[1] as u128;
        let a2 = self.0[2] as u128;
        let a3 = self.0[3] as u128;
        let a4 = self.0[4] as u128;
        let b0 = rhs.0[0] as u128;
        let b1 = rhs.0[1] as u128;
        let b2 = rhs.0[2] as u128;
        let b3 = rhs.0[3] as u128;
        let b4 = rhs.0[4] as u128;
        let m = 0xFFFFFFFFFFFFFu128;
        let r = 0x1000003D10u128;

        debug_assert!(a0 >> 56 == 0);
        debug_assert!(a1 >> 56 == 0);
        debug_assert!(a2 >> 56 == 0);
        debug_assert!(a3 >> 56 == 0);
        debug_assert!(a4 >> 52 == 0);

        debug_assert!(b0 >> 56 == 0);
        debug_assert!(b1 >> 56 == 0);
        debug_assert!(b2 >> 56 == 0);
        debug_assert!(b3 >> 56 == 0);
        debug_assert!(b4 >> 52 == 0);

        // [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
        // for 0 <= x <= 4, px is a shorthand for sum(a[i]*b[x-i], i=0..x).
        // for 4 <= x <= 8, px is a shorthand for sum(a[i]*b[x-i], i=(x-4)..4)
        // Note that [x 0 0 0 0 0] = [x*r].

        let mut d = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0;
        debug_assert!(d >> 114 == 0);
        // [d 0 0 0] = [p3 0 0 0]
        let mut c = a4 * b4;
        debug_assert!(c >> 112 == 0);
        // [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0]
        d += (c & m) * r;
        c >>= 52;
        debug_assert!(d >> 115 == 0);
        debug_assert!(c >> 60 == 0);
        let c64 = c as u64;
        // [c 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0]
        let t3 = (d & m) as u64;
        d >>= 52;
        debug_assert!(t3 >> 52 == 0);
        debug_assert!(d >> 63 == 0);
        let d64 = d as u64;
        // [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0]

        d = d64 as u128 + a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0;
        debug_assert!(d >> 115 == 0);
        // [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0]
        d += c64 as u128 * r;
        debug_assert!(d >> 116 == 0);
        // [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0]
        let t4 = (d & m) as u64;
        d >>= 52;
        debug_assert!(t4 >> 52 == 0);
        debug_assert!(d >> 64 == 0);
        let d64 = d as u64;
        // [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0]
        let tx = t4 >> 48;
        let t4 = t4 & ((m as u64) >> 4);
        debug_assert!(tx >> 4 == 0);
        debug_assert!(t4 >> 48 == 0);
        // [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0]

        c = a0 * b0;
        debug_assert!(c >> 112 == 0);
        // [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0]
        d = d64 as u128 + a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1;
        debug_assert!(d >> 115 == 0);
        // [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0]
        let u0 = (d & m) as u64;
        d >>= 52;
        debug_assert!(u0 >> 52 == 0);
        debug_assert!(d >> 63 == 0);
        let d64 = d as u64;
        // [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0]
        // [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0]
        let u0 = (u0 << 4) | tx;
        debug_assert!(u0 >> 56 == 0);
        // [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0]
        c += u0 as u128 * ((r as u64) >> 4) as u128;
        debug_assert!(c >> 115 == 0);
        // [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0]
        let r0 = (c & m) as u64;
        c >>= 52;
        debug_assert!(r0 >> 52 == 0);
        debug_assert!(c >> 61 == 0);
        let c64 = c as u64;
        // [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0]

        c = c64 as u128 + a0 * b1 + a1 * b0;
        debug_assert!(c >> 114 == 0);
        // [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0]
        d = d64 as u128 + a2 * b4 + a3 * b3 + a4 * b2;
        debug_assert!(d >> 114 == 0);
        // [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0]
        c += (d & m) * r;
        d >>= 52;
        debug_assert!(c >> 115 == 0);
        debug_assert!(d >> 62 == 0);
        let d64 = d as u64;
        // [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0]
        let r1 = (c & m) as u64;
        c >>= 52;
        debug_assert!(r1 >> 52 == 0);
        debug_assert!(c >> 63 == 0);
        let c64 = c as u64;
        // [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0]

        c = c64 as u128 + a0 * b2 + a1 * b1 + a2 * b0;
        debug_assert!(c >> 114 == 0);
        // [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0]
        d = d64 as u128 + a3 * b4 + a4 * b3;
        debug_assert!(d >> 114 == 0);
        // [d 0 0 t4 t3 c t1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
        c += (d & m) * r;
        d >>= 52;
        debug_assert!(c >> 115 == 0);
        debug_assert!(d >> 62 == 0);
        let d64 = d as u64;
        // [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]

        // [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
        let r2 = (c & m) as u64;
        c >>= 52;
        debug_assert!(r2 >> 52 == 0);
        debug_assert!(c >> 63 == 0);
        let c64 = c as u64;
        // [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
        c = c64 as u128 + (d64 as u128) * r + t3 as u128;
        debug_assert!(c >> 100 == 0);
        // [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
        let r3 = (c & m) as u64;
        c >>= 52;
        debug_assert!(r3 >> 52 == 0);
        debug_assert!(c >> 48 == 0);
        let c64 = c as u64;
        // [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
        c = c64 as u128 + t4 as u128;
        debug_assert!(c >> 49 == 0);
        // [c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]
        let r4 = c as u64;
        debug_assert!(r4 >> 49 == 0);
        // [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0]

        Self([r0, r1, r2, r3, r4])
    }

    /// Returns self * rhs mod p
    /// Brings the magnitude to 1 (but doesn't normalize the result).
    /// The magnitudes of arguments should be <= 8.
    #[inline(always)]
    pub fn mul(&self, rhs: &Self) -> Self {
        self.mul_inner(rhs)
    }

    /// Returns self * self
    /// Brings the magnitude to 1 (but doesn't normalize the result).
    /// The magnitudes of arguments should be <= 8.
    pub fn square(&self) -> Self {
        self.mul_inner(self)
    }
}

impl Default for FieldElement5x52 {
    fn default() -> Self {
        Self::ZERO
    }
}

impl ConditionallySelectable for FieldElement5x52 {
    #[inline(always)]
    fn conditional_select(
        a: &FieldElement5x52,
        b: &FieldElement5x52,
        choice: Choice,
    ) -> FieldElement5x52 {
        FieldElement5x52([
            u64::conditional_select(&a.0[0], &b.0[0], choice),
            u64::conditional_select(&a.0[1], &b.0[1], choice),
            u64::conditional_select(&a.0[2], &b.0[2], choice),
            u64::conditional_select(&a.0[3], &b.0[3], choice),
            u64::conditional_select(&a.0[4], &b.0[4], choice),
        ])
    }
}

impl ConstantTimeEq for FieldElement5x52 {
    fn ct_eq(&self, other: &Self) -> Choice {
        self.0[0].ct_eq(&other.0[0])
            & self.0[1].ct_eq(&other.0[1])
            & self.0[2].ct_eq(&other.0[2])
            & self.0[3].ct_eq(&other.0[3])
            & self.0[4].ct_eq(&other.0[4])
    }
}

impl Zeroize for FieldElement5x52 {
    fn zeroize(&mut self) {
        self.0.zeroize();
    }
}

#[cfg(test)]
mod tests {
    use super::FieldElement5x52;

    #[test]
    fn overflow_check_after_weak_normalize() {
        // A regression test for a missing condition in `get_overflow()`.
        // The condition was only missing in the 32-bit case,
        // but we're adding a 64-bit testcase nevertheless.
        //
        // In `normalize()`, after the `normalize_weak()` call,
        // the excess bit from the limb 0 is propagated all the way to the last limb.
        // This constitutes an overflow, since the last bit becomes equal to (1 << 22),
        // that is 23 bits in total.
        // When `get_overflow()` is called afterwards, this was not detected,
        // since the corresponding condition (checking for the last limb being > 22 bits)
        // was missing.
        // This resulted in a debug assert firing later.
        //
        // This is essentially 2^256
        let z = FieldElement5x52([
            (1 << 52), // an excess bit here
            // the remaining full-sized limbs are at top normalized capacity
            (1 << 52) - 1,
            (1 << 52) - 1,
            (1 << 52) - 1,
            // the last limb is also at top normalized capacity
            (1 << 48) - 1,
        ]);

        // Used to fail here (debug_assert firing because overflow happened at an unexpected place):
        let z_normalized = z.normalize();

        // Properly normalized result, just to be sure
        // The initial number is 2^256, so the result is 0x1000003d1
        let z_reference = FieldElement5x52([0x1000003d1, 0, 0, 0, 0]);

        assert_eq!(z_normalized.0, z_reference.0);
    }
}