openvm_ecc_guest/
weierstrass.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
use alloc::vec::Vec;
use core::ops::{AddAssign, Mul};

use openvm_algebra_guest::{Field, IntMod};

use super::group::Group;

/// Short Weierstrass curve affine point.
pub trait WeierstrassPoint: Sized {
    /// The `b` coefficient in the Weierstrass curve equation `y^2 = x^3 + a x + b`.
    const CURVE_B: Self::Coordinate;
    const IDENTITY: Self;

    type Coordinate: Field;

    /// The concatenated `x, y` coordinates of the affine point, where
    /// coordinates are in little endian.
    ///
    /// **Warning**: The memory layout of `Self` is expected to pack
    /// `x` and `y` contigously with no unallocated space in between.
    fn as_le_bytes(&self) -> &[u8];

    /// Raw constructor without asserting point is on the curve.
    fn from_xy_unchecked(x: Self::Coordinate, y: Self::Coordinate) -> Self;
    fn into_coords(self) -> (Self::Coordinate, Self::Coordinate);
    fn x(&self) -> &Self::Coordinate;
    fn y(&self) -> &Self::Coordinate;
    fn x_mut(&mut self) -> &mut Self::Coordinate;
    fn y_mut(&mut self) -> &mut Self::Coordinate;

    /// Hazmat: Assumes self != +- p2 and self != identity and p2 != identity.
    fn add_ne_nonidentity(&self, p2: &Self) -> Self;
    /// Hazmat: Assumes self != +- p2 and self != identity and p2 != identity.
    fn add_ne_assign_nonidentity(&mut self, p2: &Self);
    /// Hazmat: Assumes self != +- p2 and self != identity and p2 != identity.
    fn sub_ne_nonidentity(&self, p2: &Self) -> Self;
    /// Hazmat: Assumes self != +- p2 and self != identity and p2 != identity.
    fn sub_ne_assign_nonidentity(&mut self, p2: &Self);
    /// Hazmat: Assumes self != identity and 2 * self != identity.
    fn double_nonidentity(&self) -> Self;
    /// Hazmat: Assumes self != identity and 2 * self != identity.
    fn double_assign_nonidentity(&mut self);

    fn from_xy(x: Self::Coordinate, y: Self::Coordinate) -> Option<Self>
    where
        for<'a> &'a Self::Coordinate: Mul<&'a Self::Coordinate, Output = Self::Coordinate>,
    {
        if x == Self::Coordinate::ZERO && y == Self::Coordinate::ZERO {
            Some(Self::IDENTITY)
        } else {
            Self::from_xy_nonidentity(x, y)
        }
    }

    fn from_xy_nonidentity(x: Self::Coordinate, y: Self::Coordinate) -> Option<Self>
    where
        for<'a> &'a Self::Coordinate: Mul<&'a Self::Coordinate, Output = Self::Coordinate>,
    {
        let lhs = &y * &y;
        let rhs = &x * &x * &x + &Self::CURVE_B;
        if lhs != rhs {
            return None;
        }
        Some(Self::from_xy_unchecked(x, y))
    }
}

pub trait FromCompressed<Coordinate> {
    /// Given `x`-coordinate,
    ///
    /// ## Panics
    /// If the input is not a valid compressed point.
    /// The zkVM panics instead of returning an [Option] because this function
    /// can only guarantee correct behavior when decompression is possible,
    /// but the function cannot compute the boolean equal to true if and only
    /// if decompression is possible.
    // This is because we rely on a hint for the correct decompressed value
    // and then constrain its correctness. A malicious prover could hint
    // incorrectly, so there is no way to use a hint to prove that the input
    // **cannot** be decompressed.
    fn decompress(x: Coordinate, rec_id: &u8) -> Self;

    /// If it exists, hints the unique `y` coordinate that is less than `Coordinate::MODULUS`
    /// such that `(x, y)` is a point on the curve and `y` has parity equal to `rec_id`.
    /// If such `y` does not exist, undefined behavior.
    ///
    /// This is only a hint, and the returned `y` does not guarantee any of the above properties.
    /// They must be checked separately. Normal users should use `decompress` directly.
    fn hint_decompress(x: &Coordinate, rec_id: &u8) -> Coordinate;
}

/// A trait for elliptic curves that bridges the openvm types and external types with CurveArithmetic etc.
/// Implement this for external curves with corresponding openvm point and scalar types.
pub trait IntrinsicCurve {
    type Scalar: Clone;
    type Point: Clone;

    /// Multi-scalar multiplication.
    /// The implementation may be specialized to use properties of the curve
    /// (e.g., if the curve order is prime).
    fn msm(coeffs: &[Self::Scalar], bases: &[Self::Point]) -> Self::Point;
}

// MSM using preprocessed table (windowed method)
// Reference: modified from https://github.com/arkworks-rs/algebra/blob/master/ec/src/scalar_mul/mod.rs
//
// We specialize to Weierstrass curves and further make optimizations for when the curve order is prime.

/// Cached precomputations of scalar multiples of several base points.
/// - `window_bits` is the window size used for the precomputation
/// - `max_scalar_bits` is the maximum size of the scalars that will be multiplied
/// - `table` is the precomputed table
pub struct CachedMulTable<'a, C: IntrinsicCurve> {
    /// Window bits. Must be > 0.
    /// For alignment, we currently require this to divide 8 (bits in a byte).
    pub window_bits: usize,
    pub bases: &'a [C::Point],
    /// `table[i][j] = (j + 2) * bases[i]` for `j + 2 < 2 ** window_bits`
    table: Vec<Vec<C::Point>>,
    /// Needed to return reference to the identity point.
    identity: C::Point,
}

impl<'a, C: IntrinsicCurve> CachedMulTable<'a, C>
where
    C::Point: WeierstrassPoint + Group,
    C::Scalar: IntMod,
{
    /// Constructor when each element of `bases` has prime torsion or is identity.
    ///
    /// Assumes that `window_bits` is less than (number of bits - 1) of the order of
    /// subgroup generated by each non-identity `base`.
    pub fn new_with_prime_order(bases: &'a [C::Point], window_bits: usize) -> Self {
        assert!(window_bits > 0);
        let window_size = 1 << window_bits;
        let table = bases
            .iter()
            .map(|base| {
                if base.is_identity() {
                    vec![<C::Point as Group>::IDENTITY; window_size - 2]
                } else {
                    let mut multiples = Vec::with_capacity(window_size - 2);
                    for _ in 0..window_size - 2 {
                        // Because the order of `base` is prime, we are guaranteed that
                        // j * base != identity,
                        // j * base != +- base for j > 1,
                        // j * base + base != identity
                        let multiple = multiples
                            .last()
                            .map(|last| WeierstrassPoint::add_ne_nonidentity(last, base))
                            .unwrap_or_else(|| base.double_nonidentity());
                        multiples.push(multiple);
                    }
                    multiples
                }
            })
            .collect();

        Self {
            window_bits,
            bases,
            table,
            identity: <C::Point as Group>::IDENTITY,
        }
    }

    fn get_multiple(&self, base_idx: usize, scalar: usize) -> &C::Point {
        if scalar == 0 {
            &self.identity
        } else if scalar == 1 {
            unsafe { self.bases.get_unchecked(base_idx) }
        } else {
            unsafe { self.table.get_unchecked(base_idx).get_unchecked(scalar - 2) }
        }
    }

    /// Computes `sum scalars[i] * bases[i]`.
    ///
    /// For implementation simplicity, currently only implemented when
    /// `window_bits` divides 8 (number of bits in a byte).
    pub fn windowed_mul(&self, scalars: &[C::Scalar]) -> C::Point {
        assert_eq!(8 % self.window_bits, 0);
        assert_eq!(scalars.len(), self.bases.len());
        let windows_per_byte = 8 / self.window_bits;

        let num_windows = C::Scalar::NUM_LIMBS * windows_per_byte;
        let mask = (1u8 << self.window_bits) - 1;

        // The current byte index (little endian) at the current step of the
        // windowed method, across all scalars.
        let mut limb_idx = C::Scalar::NUM_LIMBS;
        // The current bit (little endian) within the current byte of the windowed
        // method. The window will look at bits `bit_idx..bit_idx + window_bits`.
        // bit_idx will always be in range [0, 8)
        let mut bit_idx = 0;

        let mut res = <C::Point as Group>::IDENTITY;
        for outer in 0..num_windows {
            if bit_idx == 0 {
                limb_idx -= 1;
                bit_idx = 8 - self.window_bits;
            } else {
                bit_idx -= self.window_bits;
            }

            if outer != 0 {
                for _ in 0..self.window_bits {
                    // Note: this handles identity
                    res.double_assign();
                }
            }
            for (base_idx, scalar) in scalars.iter().enumerate() {
                let scalar = (scalar.as_le_bytes()[limb_idx] >> bit_idx) & mask;
                let summand = self.get_multiple(base_idx, scalar as usize);
                // handles identity
                res.add_assign(summand);
            }
        }
        res
    }
}

/// Macro to generate a newtype wrapper for [AffinePoint](crate::AffinePoint)
/// that implements elliptic curve operations by using the underlying field operations according to the
/// [formulas](https://www.hyperelliptic.org/EFD/g1p/auto-shortw.html) for short Weierstrass curves.
///
/// The following imports are required:
/// ```rust
/// use core::ops::AddAssign;
///
/// use openvm_algebra_guest::{DivUnsafe, Field};
/// use openvm_ecc_guest::{AffinePoint, Group, weierstrass::WeierstrassPoint};
/// ```
#[macro_export]
macro_rules! impl_sw_affine {
    // Assumes `a = 0` in curve equation. `$three` should be a constant expression for `3` of type `$field`.
    ($struct_name:ident, $field:ty, $three:expr, $b:expr) => {
        /// A newtype wrapper for [AffinePoint] that implements elliptic curve operations
        /// by using the underlying field operations according to the [formulas](https://www.hyperelliptic.org/EFD/g1p/auto-shortw.html) for short Weierstrass curves.
        #[derive(Debug, Clone, serde::Serialize, serde::Deserialize, PartialEq, Eq)]
        #[repr(transparent)]
        pub struct $struct_name(AffinePoint<$field>);

        impl WeierstrassPoint for $struct_name {
            const CURVE_B: $field = $b;
            const IDENTITY: Self = Self(AffinePoint::new(<$field>::ZERO, <$field>::ZERO));

            type Coordinate = $field;

            /// SAFETY: assumes that [$field] has internal representation in little-endian.
            fn as_le_bytes(&self) -> &[u8] {
                unsafe {
                    &*core::ptr::slice_from_raw_parts(
                        self as *const Self as *const u8,
                        core::mem::size_of::<Self>(),
                    )
                }
            }
            fn from_xy_unchecked(x: Self::Coordinate, y: Self::Coordinate) -> Self {
                Self(AffinePoint::new(x, y))
            }
            fn into_coords(self) -> (Self::Coordinate, Self::Coordinate) {
                (self.0.x, self.0.y)
            }
            fn x(&self) -> &Self::Coordinate {
                &self.0.x
            }
            fn y(&self) -> &Self::Coordinate {
                &self.0.y
            }
            fn x_mut(&mut self) -> &mut Self::Coordinate {
                &mut self.0.x
            }
            fn y_mut(&mut self) -> &mut Self::Coordinate {
                &mut self.0.y
            }

            fn double_nonidentity(&self) -> Self {
                use ::openvm_algebra_guest::DivUnsafe;
                // lambda = (3*x1^2+a)/(2*y1)
                // for bls12-381, a = 0
                let lambda = (&THREE * self.x() * self.x()).div_unsafe(self.y() + self.y());
                // x3 = lambda^2-x1-x1
                let x3 = &lambda * &lambda - self.x() - self.x();
                // y3 = lambda * (x1-x3) - y1
                let y3 = lambda * (self.x() - &x3) - self.y();
                Self(AffinePoint::new(x3, y3))
            }

            fn double_assign_nonidentity(&mut self) {
                // TODO: revisit if there are possible optimizations
                *self = self.double_nonidentity();
            }

            fn add_ne_nonidentity(&self, p2: &Self) -> Self {
                use ::openvm_algebra_guest::DivUnsafe;
                // lambda = (y2-y1)/(x2-x1)
                // x3 = lambda^2-x1-x2
                // y3 = lambda*(x1-x3)-y1
                let lambda = (p2.y() - self.y()).div_unsafe(p2.x() - self.x());
                let x3 = &lambda * &lambda - self.x() - p2.x();
                let y3 = lambda * (self.x() - &x3) - self.y();
                Self(AffinePoint::new(x3, y3))
            }

            fn add_ne_assign_nonidentity(&mut self, p2: &Self) {
                // TODO: revisit if there are possible optimizations
                *self = self.add_ne_nonidentity(p2);
            }

            fn sub_ne_nonidentity(&self, p2: &Self) -> Self {
                use ::openvm_algebra_guest::DivUnsafe;
                // lambda = (y2+y1)/(x1-x2)
                // x3 = lambda^2-x1-x2
                // y3 = lambda*(x1-x3)-y1
                let lambda = (p2.y() + self.y()).div_unsafe(self.x() - p2.x());
                let x3 = &lambda * &lambda - self.x() - p2.x();
                let y3 = lambda * (self.x() - &x3) - self.y();
                Self(AffinePoint::new(x3, y3))
            }

            fn sub_ne_assign_nonidentity(&mut self, p2: &Self) {
                // TODO: revisit if there are possible optimizations
                *self = self.sub_ne_nonidentity(p2);
            }
        }

        impl core::ops::Neg for $struct_name {
            type Output = Self;

            fn neg(mut self) -> Self::Output {
                self.0.y.neg_assign();
                self
            }
        }

        impl core::ops::Neg for &$struct_name {
            type Output = $struct_name;

            fn neg(self) -> Self::Output {
                self.clone().neg()
            }
        }

        impl From<$struct_name> for AffinePoint<$field> {
            fn from(value: $struct_name) -> Self {
                value.0
            }
        }

        impl From<AffinePoint<$field>> for $struct_name {
            fn from(value: AffinePoint<$field>) -> Self {
                Self(value)
            }
        }
    };
}

/// Implements `Group` on `$struct_name` assuming that `$struct_name` implements `WeierstrassPoint`.
/// Assumes that `Neg` is implemented for `&$struct_name`.
#[macro_export]
macro_rules! impl_sw_group_ops {
    ($struct_name:ident, $field:ty) => {
        impl Group for $struct_name {
            type SelfRef<'a> = &'a Self;

            const IDENTITY: Self = <Self as WeierstrassPoint>::IDENTITY;

            fn double(&self) -> Self {
                if self.is_identity() {
                    self.clone()
                } else {
                    self.double_nonidentity()
                }
            }

            fn double_assign(&mut self) {
                if !self.is_identity() {
                    self.double_assign_nonidentity();
                }
            }
        }

        impl core::ops::Add<&$struct_name> for $struct_name {
            type Output = Self;

            fn add(mut self, p2: &$struct_name) -> Self::Output {
                use core::ops::AddAssign;
                self.add_assign(p2);
                self
            }
        }

        impl core::ops::Add for $struct_name {
            type Output = Self;

            fn add(self, rhs: Self) -> Self::Output {
                self.add(&rhs)
            }
        }

        impl core::ops::Add<&$struct_name> for &$struct_name {
            type Output = $struct_name;

            fn add(self, p2: &$struct_name) -> Self::Output {
                if self.is_identity() {
                    p2.clone()
                } else if p2.is_identity() {
                    self.clone()
                } else if self.x() == p2.x() {
                    if self.y() + p2.y() == <$field as Field>::ZERO {
                        <$struct_name as WeierstrassPoint>::IDENTITY
                    } else {
                        self.double_nonidentity()
                    }
                } else {
                    self.add_ne_nonidentity(p2)
                }
            }
        }

        impl core::ops::AddAssign<&$struct_name> for $struct_name {
            fn add_assign(&mut self, p2: &$struct_name) {
                if self.is_identity() {
                    *self = p2.clone();
                } else if p2.is_identity() {
                    // do nothing
                } else if self.x() == p2.x() {
                    if self.y() + p2.y() == <$field as Field>::ZERO {
                        *self = <$struct_name as WeierstrassPoint>::IDENTITY;
                    } else {
                        self.double_assign_nonidentity();
                    }
                } else {
                    self.add_ne_assign_nonidentity(p2);
                }
            }
        }

        impl core::ops::AddAssign for $struct_name {
            fn add_assign(&mut self, rhs: Self) {
                self.add_assign(&rhs);
            }
        }

        impl core::ops::Sub<&$struct_name> for $struct_name {
            type Output = Self;

            fn sub(self, rhs: &$struct_name) -> Self::Output {
                core::ops::Sub::sub(&self, rhs)
            }
        }

        impl core::ops::Sub for $struct_name {
            type Output = $struct_name;

            fn sub(self, rhs: Self) -> Self::Output {
                self.sub(&rhs)
            }
        }

        impl core::ops::Sub<&$struct_name> for &$struct_name {
            type Output = $struct_name;

            fn sub(self, p2: &$struct_name) -> Self::Output {
                if p2.is_identity() {
                    self.clone()
                } else if self.is_identity() {
                    core::ops::Neg::neg(p2)
                } else if self.x() == p2.x() {
                    if self.y() == p2.y() {
                        <$struct_name as WeierstrassPoint>::IDENTITY
                    } else {
                        self.double_nonidentity()
                    }
                } else {
                    self.sub_ne_nonidentity(p2)
                }
            }
        }

        impl core::ops::SubAssign<&$struct_name> for $struct_name {
            fn sub_assign(&mut self, p2: &$struct_name) {
                if p2.is_identity() {
                    // do nothing
                } else if self.is_identity() {
                    *self = core::ops::Neg::neg(p2);
                } else if self.x() == p2.x() {
                    if self.y() == p2.y() {
                        *self = <$struct_name as WeierstrassPoint>::IDENTITY
                    } else {
                        self.double_assign_nonidentity();
                    }
                } else {
                    self.sub_ne_assign_nonidentity(p2);
                }
            }
        }

        impl core::ops::SubAssign for $struct_name {
            fn sub_assign(&mut self, rhs: Self) {
                self.sub_assign(&rhs);
            }
        }
    };
}