halo2_base/safe_types/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
use std::{
    borrow::Borrow,
    cmp::{max, min},
};

use crate::{
    gates::{
        flex_gate::GateInstructions,
        range::{RangeChip, RangeInstructions},
    },
    utils::ScalarField,
    AssignedValue, Context,
    QuantumCell::Witness,
};

use itertools::Itertools;

mod bytes;
mod primitives;

pub use bytes::*;
pub use primitives::*;

#[cfg(test)]
pub mod tests;

type RawAssignedValues<F> = Vec<AssignedValue<F>>;

const BITS_PER_BYTE: usize = 8;

/// [`SafeType`]'s goal is to avoid out-of-range undefined behavior.
/// When building circuits, it's common to use multiple [`AssignedValue<F>`]s to represent
/// a logical variable. For example, we might want to represent a hash with 32 [`AssignedValue<F>`]
/// where each [`AssignedValue`] represents 1 byte. However, the range of [`AssignedValue<F>`] is much
/// larger than 1 byte(0~255). If a circuit takes 32 [`AssignedValue<F>`] as inputs and some of them
/// are actually greater than 255, there could be some undefined behaviors.
/// [`SafeType`] gurantees the value range of its owned [`AssignedValue<F>`]. So circuits don't need to
/// do any extra value checking if they take SafeType as inputs.
/// - `TOTAL_BITS` is the number of total bits of this type.
/// - `BYTES_PER_ELE` is the number of bytes of each element.
#[derive(Clone, Debug)]
pub struct SafeType<F: ScalarField, const BYTES_PER_ELE: usize, const TOTAL_BITS: usize> {
    // value is stored in little-endian.
    value: RawAssignedValues<F>,
}

impl<F: ScalarField, const BYTES_PER_ELE: usize, const TOTAL_BITS: usize>
    SafeType<F, BYTES_PER_ELE, TOTAL_BITS>
{
    /// Number of bytes of each element.
    pub const BYTES_PER_ELE: usize = BYTES_PER_ELE;
    /// Total bits of this type.
    pub const TOTAL_BITS: usize = TOTAL_BITS;
    /// Number of elements of this type.
    pub const VALUE_LENGTH: usize =
        (TOTAL_BITS + BYTES_PER_ELE * BITS_PER_BYTE - 1) / (BYTES_PER_ELE * BITS_PER_BYTE);

    /// Number of bits of each element.
    pub fn bits_per_ele() -> usize {
        min(TOTAL_BITS, BYTES_PER_ELE * BITS_PER_BYTE)
    }

    // new is private so Safetype can only be constructed by this crate.
    fn new(raw_values: RawAssignedValues<F>) -> Self {
        assert!(raw_values.len() == Self::VALUE_LENGTH, "Invalid raw values length");
        Self { value: raw_values }
    }

    /// Return values in little-endian.
    pub fn value(&self) -> &[AssignedValue<F>] {
        &self.value
    }
}

impl<F: ScalarField, const BYTES_PER_ELE: usize, const TOTAL_BITS: usize> AsRef<[AssignedValue<F>]>
    for SafeType<F, BYTES_PER_ELE, TOTAL_BITS>
{
    fn as_ref(&self) -> &[AssignedValue<F>] {
        self.value()
    }
}

impl<F: ScalarField, const TOTAL_BITS: usize> TryFrom<Vec<SafeByte<F>>>
    for SafeType<F, 1, TOTAL_BITS>
{
    type Error = String;

    fn try_from(value: Vec<SafeByte<F>>) -> Result<Self, Self::Error> {
        if value.len() * 8 != TOTAL_BITS {
            return Err("Invalid length".to_owned());
        }
        Ok(Self::new(value.into_iter().map(|b| b.0).collect::<Vec<_>>()))
    }
}

/// Represent TOTAL_BITS with the least number of AssignedValue<F>.
/// (2^(F::NUM_BITS) - 1) might not be a valid value for F. e.g. max value of F is a prime in [2^(F::NUM_BITS-1), 2^(F::NUM_BITS) - 1]
#[allow(type_alias_bounds)]
type CompactSafeType<F: ScalarField, const TOTAL_BITS: usize> =
    SafeType<F, { (F::CAPACITY / 8) as usize }, TOTAL_BITS>;

/// SafeType for uint8.
pub type SafeUint8<F> = CompactSafeType<F, 8>;
/// SafeType for uint16.
pub type SafeUint16<F> = CompactSafeType<F, 16>;
/// SafeType for uint32.
pub type SafeUint32<F> = CompactSafeType<F, 32>;
/// SafeType for uint64.
pub type SafeUint64<F> = CompactSafeType<F, 64>;
/// SafeType for uint128.
pub type SafeUint128<F> = CompactSafeType<F, 128>;
/// SafeType for uint160.
pub type SafeUint160<F> = CompactSafeType<F, 160>;
/// SafeType for uint256.
pub type SafeUint256<F> = CompactSafeType<F, 256>;
/// SafeType for Address.
pub type SafeAddress<F> = SafeType<F, 1, 160>;
/// SafeType for bytes32.
pub type SafeBytes32<F> = SafeType<F, 1, 256>;

/// Chip for SafeType
pub struct SafeTypeChip<'a, F: ScalarField> {
    range_chip: &'a RangeChip<F>,
}

impl<'a, F: ScalarField> SafeTypeChip<'a, F> {
    /// Construct a SafeTypeChip.
    pub fn new(range_chip: &'a RangeChip<F>) -> Self {
        Self { range_chip }
    }

    /// Convert a vector of AssignedValue (treated as little-endian) to a SafeType.
    /// The number of bytes of inputs must equal to the number of bytes of outputs.
    /// This function also add contraints that a AssignedValue in inputs must be in the range of a byte.
    pub fn raw_bytes_to<const BYTES_PER_ELE: usize, const TOTAL_BITS: usize>(
        &self,
        ctx: &mut Context<F>,
        inputs: RawAssignedValues<F>,
    ) -> SafeType<F, BYTES_PER_ELE, TOTAL_BITS> {
        let element_bits = SafeType::<F, BYTES_PER_ELE, TOTAL_BITS>::bits_per_ele();
        let bits = TOTAL_BITS;
        assert!(
            inputs.len() * BITS_PER_BYTE == max(bits, BITS_PER_BYTE),
            "number of bits doesn't match"
        );
        self.add_bytes_constraints(ctx, &inputs, bits);
        // inputs is a bool or uint8.
        if bits == 1 || element_bits == BITS_PER_BYTE {
            return SafeType::<F, BYTES_PER_ELE, TOTAL_BITS>::new(inputs);
        };

        let byte_base = (0..BYTES_PER_ELE)
            .map(|i| Witness(self.range_chip.gate.pow_of_two[i * BITS_PER_BYTE]))
            .collect::<Vec<_>>();
        let value = inputs
            .chunks(BYTES_PER_ELE)
            .map(|chunk| {
                self.range_chip.gate.inner_product(
                    ctx,
                    chunk.to_vec(),
                    byte_base[..chunk.len()].to_vec(),
                )
            })
            .collect::<Vec<_>>();
        SafeType::<F, BYTES_PER_ELE, TOTAL_BITS>::new(value)
    }

    /// Unsafe method that directly converts `input` to [`SafeType`] **without any checks**.
    /// This should **only** be used if an external library needs to convert their types to [`SafeType`].
    pub fn unsafe_to_safe_type<const BYTES_PER_ELE: usize, const TOTAL_BITS: usize>(
        inputs: RawAssignedValues<F>,
    ) -> SafeType<F, BYTES_PER_ELE, TOTAL_BITS> {
        assert_eq!(inputs.len(), SafeType::<F, BYTES_PER_ELE, TOTAL_BITS>::VALUE_LENGTH);
        SafeType::<F, BYTES_PER_ELE, TOTAL_BITS>::new(inputs)
    }

    /// Constrains that the `input` is a boolean value (either 0 or 1) and wraps it in [`SafeBool`].
    pub fn assert_bool(&self, ctx: &mut Context<F>, input: AssignedValue<F>) -> SafeBool<F> {
        self.range_chip.gate().assert_bit(ctx, input);
        SafeBool(input)
    }

    /// Load a boolean value as witness and constrain it is either 0 or 1.
    pub fn load_bool(&self, ctx: &mut Context<F>, input: bool) -> SafeBool<F> {
        let input = ctx.load_witness(F::from(input));
        self.assert_bool(ctx, input)
    }

    /// Unsafe method that directly converts `input` to [`SafeBool`] **without any checks**.
    /// This should **only** be used if an external library needs to convert their types to [`SafeBool`].
    pub fn unsafe_to_bool(input: AssignedValue<F>) -> SafeBool<F> {
        SafeBool(input)
    }

    /// Constrains that the `input` is a byte value and wraps it in [`SafeByte`].
    pub fn assert_byte(&self, ctx: &mut Context<F>, input: AssignedValue<F>) -> SafeByte<F> {
        self.range_chip.range_check(ctx, input, BITS_PER_BYTE);
        SafeByte(input)
    }

    /// Load a boolean value as witness and constrain it is either 0 or 1.
    pub fn load_byte(&self, ctx: &mut Context<F>, input: u8) -> SafeByte<F> {
        let input = ctx.load_witness(F::from(input as u64));
        self.assert_byte(ctx, input)
    }

    /// Unsafe method that directly converts `input` to [`SafeByte`] **without any checks**.
    /// This should **only** be used if an external library needs to convert their types to [`SafeByte`].
    pub fn unsafe_to_byte(input: AssignedValue<F>) -> SafeByte<F> {
        SafeByte(input)
    }

    /// Unsafe method that directly converts `inputs` to [`VarLenBytes`] **without any checks**.
    /// This should **only** be used if an external library needs to convert their types to [`SafeByte`].
    pub fn unsafe_to_var_len_bytes<const MAX_LEN: usize>(
        inputs: [AssignedValue<F>; MAX_LEN],
        len: AssignedValue<F>,
    ) -> VarLenBytes<F, MAX_LEN> {
        VarLenBytes::<F, MAX_LEN>::new(inputs.map(|input| Self::unsafe_to_byte(input)), len)
    }

    /// Unsafe method that directly converts `inputs` to [`VarLenBytesVec`] **without any checks**.
    /// This should **only** be used if an external library needs to convert their types to [`SafeByte`].
    pub fn unsafe_to_var_len_bytes_vec(
        inputs: RawAssignedValues<F>,
        len: AssignedValue<F>,
        max_len: usize,
    ) -> VarLenBytesVec<F> {
        VarLenBytesVec::<F>::new(
            inputs.iter().map(|input| Self::unsafe_to_byte(*input)).collect_vec(),
            len,
            max_len,
        )
    }

    /// Unsafe method that directly converts `inputs` to [`FixLenBytes`] **without any checks**.
    /// This should **only** be used if an external library needs to convert their types to [`SafeByte`].
    pub fn unsafe_to_fix_len_bytes<const MAX_LEN: usize>(
        inputs: [AssignedValue<F>; MAX_LEN],
    ) -> FixLenBytes<F, MAX_LEN> {
        FixLenBytes::<F, MAX_LEN>::new(inputs.map(|input| Self::unsafe_to_byte(input)))
    }

    /// Unsafe method that directly converts `inputs` to [`FixLenBytesVec`] **without any checks**.
    /// This should **only** be used if an external library needs to convert their types to [`SafeByte`].
    pub fn unsafe_to_fix_len_bytes_vec(
        inputs: RawAssignedValues<F>,
        len: usize,
    ) -> FixLenBytesVec<F> {
        FixLenBytesVec::<F>::new(
            inputs.into_iter().map(|input| Self::unsafe_to_byte(input)).collect_vec(),
            len,
        )
    }

    /// Converts a slice of AssignedValue(treated as little-endian) to VarLenBytes.
    ///
    /// * inputs: Slice representing the byte array.
    /// * len: [`AssignedValue<F>`] witness representing the variable length of the byte array. Constrained to be `<= MAX_LEN`.
    /// * MAX_LEN: [usize] representing the maximum length of the byte array and the number of elements it must contain.
    ///
    /// ## Assumptions
    /// * `MAX_LEN < u64::MAX` to prevent overflow (but you should never make an array this large)
    /// * `ceil((MAX_LEN + 1).bits() / lookup_bits) * lookup_bits <= F::CAPACITY` where `lookup_bits = self.range_chip.lookup_bits`
    pub fn raw_to_var_len_bytes<const MAX_LEN: usize>(
        &self,
        ctx: &mut Context<F>,
        inputs: [AssignedValue<F>; MAX_LEN],
        len: AssignedValue<F>,
    ) -> VarLenBytes<F, MAX_LEN> {
        self.range_chip.check_less_than_safe(ctx, len, MAX_LEN as u64 + 1);
        VarLenBytes::<F, MAX_LEN>::new(inputs.map(|input| self.assert_byte(ctx, input)), len)
    }

    /// Converts a vector of AssignedValue to [VarLenBytesVec]. Not encouraged to use because `MAX_LEN` cannot be verified at compile time.
    ///
    /// * inputs: Vector representing the byte array, right padded to `max_len`. See [VarLenBytesVec] for details about padding.
    /// * len: [`AssignedValue<F>`] witness representing the variable length of the byte array. Constrained to be `<= max_len`.
    /// * max_len: [usize] representing the maximum length of the byte array and the number of elements it must contain. We enforce this to be provided explictly to make sure length of `inputs` is determinstic.
    ///
    /// ## Assumptions
    /// * `max_len < u64::MAX` to prevent overflow (but you should never make an array this large)
    /// * `ceil((max_len + 1).bits() / lookup_bits) * lookup_bits <= F::CAPACITY` where `lookup_bits = self.range_chip.lookup_bits`
    pub fn raw_to_var_len_bytes_vec(
        &self,
        ctx: &mut Context<F>,
        inputs: RawAssignedValues<F>,
        len: AssignedValue<F>,
        max_len: usize,
    ) -> VarLenBytesVec<F> {
        self.range_chip.check_less_than_safe(ctx, len, max_len as u64 + 1);
        VarLenBytesVec::<F>::new(
            inputs.iter().map(|input| self.assert_byte(ctx, *input)).collect_vec(),
            len,
            max_len,
        )
    }

    /// Converts a slice of AssignedValue(treated as little-endian) to FixLenBytes.
    ///
    /// * inputs: Slice representing the byte array.
    /// * LEN: length of the byte array.
    pub fn raw_to_fix_len_bytes<const LEN: usize>(
        &self,
        ctx: &mut Context<F>,
        inputs: [AssignedValue<F>; LEN],
    ) -> FixLenBytes<F, LEN> {
        FixLenBytes::<F, LEN>::new(inputs.map(|input| self.assert_byte(ctx, input)))
    }

    /// Converts a slice of AssignedValue(treated as little-endian) to FixLenBytesVec.
    ///
    /// * inputs: Slice representing the byte array.
    /// * len: length of the byte array. We enforce this to be provided explictly to make sure length of `inputs` is determinstic.
    pub fn raw_to_fix_len_bytes_vec(
        &self,
        ctx: &mut Context<F>,
        inputs: RawAssignedValues<F>,
        len: usize,
    ) -> FixLenBytesVec<F> {
        FixLenBytesVec::<F>::new(
            inputs.into_iter().map(|input| self.assert_byte(ctx, input)).collect_vec(),
            len,
        )
    }

    /// Assumes that `bits <= inputs.len() * 8`.
    fn add_bytes_constraints(
        &self,
        ctx: &mut Context<F>,
        inputs: &RawAssignedValues<F>,
        bits: usize,
    ) {
        let mut bits_left = bits;
        for input in inputs {
            let num_bit = min(bits_left, BITS_PER_BYTE);
            self.range_chip.range_check(ctx, *input, num_bit);
            bits_left -= num_bit;
        }
    }

    // TODO: Add comparison. e.g. is_less_than(SafeUint8, SafeUint8) -> SafeBool
    // TODO: Add type castings. e.g. uint256 -> bytes32/uint32 -> uint64
}