crypto_bigint/uint/
rand.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
//! Random number generator support

use super::Uint;
use crate::{Encoding, Limb, NonZero, Random, RandomMod};
use rand_core::CryptoRngCore;
use subtle::ConstantTimeLess;

impl<const LIMBS: usize> Random for Uint<LIMBS> {
    /// Generate a cryptographically secure random [`Uint`].
    fn random(mut rng: &mut impl CryptoRngCore) -> Self {
        let mut limbs = [Limb::ZERO; LIMBS];

        for limb in &mut limbs {
            *limb = Limb::random(&mut rng)
        }

        limbs.into()
    }
}

impl<const LIMBS: usize> RandomMod for Uint<LIMBS> {
    /// Generate a cryptographically secure random [`Uint`] which is less than
    /// a given `modulus`.
    ///
    /// This function uses rejection sampling, a method which produces an
    /// unbiased distribution of in-range values provided the underlying
    /// CSRNG is unbiased, but runs in variable-time.
    ///
    /// The variable-time nature of the algorithm should not pose a security
    /// issue so long as the underlying random number generator is truly a
    /// CSRNG, where previous outputs are unrelated to subsequent
    /// outputs and do not reveal information about the RNG's internal state.
    fn random_mod(rng: &mut impl CryptoRngCore, modulus: &NonZero<Self>) -> Self {
        let mut n = Self::ZERO;

        let n_bits = modulus.as_ref().bits_vartime();
        let n_bytes = (n_bits + 7) / 8;
        let n_limbs = (n_bits + Limb::BITS - 1) / Limb::BITS;
        let hi_bytes = n_bytes - (n_limbs - 1) * Limb::BYTES;

        let mut bytes = Limb::ZERO.to_le_bytes();

        loop {
            for i in 0..n_limbs - 1 {
                rng.fill_bytes(bytes.as_mut());
                // Need to deserialize from little-endian to make sure that two 32-bit limbs
                // deserialized sequentially are equal to one 64-bit limb produced from the same
                // byte stream.
                n.limbs[i] = Limb::from_le_bytes(bytes);
            }

            // Generate the high limb which may need to only be filled partially.
            bytes.as_mut().fill(0);
            rng.fill_bytes(&mut (bytes.as_mut()[0..hi_bytes]));
            n.limbs[n_limbs - 1] = Limb::from_le_bytes(bytes);

            if n.ct_lt(modulus).into() {
                return n;
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::{NonZero, RandomMod, U256};
    use rand_core::SeedableRng;

    #[test]
    fn random_mod() {
        let mut rng = rand_chacha::ChaCha8Rng::seed_from_u64(1);

        // Ensure `random_mod` runs in a reasonable amount of time
        let modulus = NonZero::new(U256::from(42u8)).unwrap();
        let res = U256::random_mod(&mut rng, &modulus);

        // Check that the value is in range
        assert!(res >= U256::ZERO);
        assert!(res < U256::from(42u8));

        // Ensure `random_mod` runs in a reasonable amount of time
        // when the modulus is larger than 1 limb
        let modulus = NonZero::new(U256::from(0x10000000000000001u128)).unwrap();
        let res = U256::random_mod(&mut rng, &modulus);

        // Check that the value is in range
        assert!(res >= U256::ZERO);
        assert!(res < U256::from(0x10000000000000001u128));
    }
}