halo2_proofs/poly/
multiopen.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
//! This module contains an optimisation of the polynomial commitment opening
//! scheme described in the [Halo][halo] paper.
//!
//! [halo]: https://eprint.iacr.org/2019/1021

use std::collections::{BTreeMap, BTreeSet};

use super::*;
use crate::{
    arithmetic::{CurveAffine, FieldExt},
    transcript::ChallengeScalar,
};

mod prover;
mod verifier;

pub use prover::create_proof;
pub use verifier::verify_proof;

#[derive(Clone, Copy, Debug)]
struct X1 {}
/// Challenge for compressing openings at the same point sets together.
type ChallengeX1<F> = ChallengeScalar<F, X1>;

#[derive(Clone, Copy, Debug)]
struct X2 {}
/// Challenge for keeping the multi-point quotient polynomial terms linearly independent.
type ChallengeX2<F> = ChallengeScalar<F, X2>;

#[derive(Clone, Copy, Debug)]
struct X3 {}
/// Challenge point at which the commitments are opened.
type ChallengeX3<F> = ChallengeScalar<F, X3>;

#[derive(Clone, Copy, Debug)]
struct X4 {}
/// Challenge for collapsing the openings of the various remaining polynomials at x_3
/// together.
type ChallengeX4<F> = ChallengeScalar<F, X4>;

/// A polynomial query at a point
#[derive(Debug, Clone)]
pub struct ProverQuery<'a, C: CurveAffine> {
    /// point at which polynomial is queried
    pub point: C::Scalar,
    /// coefficients of polynomial
    pub poly: &'a Polynomial<C::Scalar, Coeff>,
    /// blinding factor of polynomial
    pub blind: commitment::Blind<C::Scalar>,
}

/// A polynomial query at a point
#[derive(Debug, Clone)]
pub struct VerifierQuery<'r, 'params: 'r, C: CurveAffine> {
    /// point at which polynomial is queried
    point: C::Scalar,
    /// commitment to polynomial
    commitment: CommitmentReference<'r, 'params, C>,
    /// evaluation of polynomial at query point
    eval: C::Scalar,
}

impl<'r, 'params: 'r, C: CurveAffine> VerifierQuery<'r, 'params, C> {
    /// Create a new verifier query based on a commitment
    pub fn new_commitment(commitment: &'r C, point: C::Scalar, eval: C::Scalar) -> Self {
        VerifierQuery {
            point,
            eval,
            commitment: CommitmentReference::Commitment(commitment),
        }
    }

    /// Create a new verifier query based on a linear combination of commitments
    pub fn new_msm(
        msm: &'r commitment::MSM<'params, C>,
        point: C::Scalar,
        eval: C::Scalar,
    ) -> Self {
        VerifierQuery {
            point,
            eval,
            commitment: CommitmentReference::MSM(msm),
        }
    }
}

#[derive(Copy, Clone, Debug)]
enum CommitmentReference<'r, 'params: 'r, C: CurveAffine> {
    Commitment(&'r C),
    MSM(&'r commitment::MSM<'params, C>),
}

impl<'r, 'params: 'r, C: CurveAffine> PartialEq for CommitmentReference<'r, 'params, C> {
    fn eq(&self, other: &Self) -> bool {
        match (self, other) {
            (&CommitmentReference::Commitment(a), &CommitmentReference::Commitment(b)) => {
                std::ptr::eq(a, b)
            }
            (&CommitmentReference::MSM(a), &CommitmentReference::MSM(b)) => std::ptr::eq(a, b),
            _ => false,
        }
    }
}

#[derive(Debug)]
struct CommitmentData<F, T: PartialEq> {
    commitment: T,
    set_index: usize,
    point_indices: Vec<usize>,
    evals: Vec<F>,
}

impl<F, T: PartialEq> CommitmentData<F, T> {
    fn new(commitment: T) -> Self {
        CommitmentData {
            commitment,
            set_index: 0,
            point_indices: vec![],
            evals: vec![],
        }
    }
}

trait Query<F>: Sized {
    type Commitment: PartialEq + Copy;
    type Eval: Clone + Default;

    fn get_point(&self) -> F;
    fn get_eval(&self) -> Self::Eval;
    fn get_commitment(&self) -> Self::Commitment;
}

type IntermediateSets<F, Q> = (
    Vec<CommitmentData<<Q as Query<F>>::Eval, <Q as Query<F>>::Commitment>>,
    Vec<Vec<F>>,
);

fn construct_intermediate_sets<F: FieldExt, I, Q: Query<F>>(queries: I) -> IntermediateSets<F, Q>
where
    I: IntoIterator<Item = Q> + Clone,
{
    // Construct sets of unique commitments and corresponding information about
    // their queries.
    let mut commitment_map: Vec<CommitmentData<Q::Eval, Q::Commitment>> = vec![];

    // Also construct mapping from a unique point to a point_index. This defines
    // an ordering on the points.
    let mut point_index_map = BTreeMap::new();

    // Iterate over all of the queries, computing the ordering of the points
    // while also creating new commitment data.
    for query in queries.clone() {
        let num_points = point_index_map.len();
        let point_idx = point_index_map
            .entry(query.get_point())
            .or_insert(num_points);

        if let Some(pos) = commitment_map
            .iter()
            .position(|comm| comm.commitment == query.get_commitment())
        {
            commitment_map[pos].point_indices.push(*point_idx);
        } else {
            let mut tmp = CommitmentData::new(query.get_commitment());
            tmp.point_indices.push(*point_idx);
            commitment_map.push(tmp);
        }
    }

    // Also construct inverse mapping from point_index to the point
    let mut inverse_point_index_map = BTreeMap::new();
    for (&point, &point_index) in point_index_map.iter() {
        inverse_point_index_map.insert(point_index, point);
    }

    // Construct map of unique ordered point_idx_sets to their set_idx
    let mut point_idx_sets = BTreeMap::new();
    // Also construct mapping from commitment to point_idx_set
    let mut commitment_set_map = Vec::new();

    for commitment_data in commitment_map.iter() {
        let mut point_index_set = BTreeSet::new();
        // Note that point_index_set is ordered, unlike point_indices
        for &point_index in commitment_data.point_indices.iter() {
            point_index_set.insert(point_index);
        }

        // Push point_index_set to CommitmentData for the relevant commitment
        commitment_set_map.push((commitment_data.commitment, point_index_set.clone()));

        let num_sets = point_idx_sets.len();
        point_idx_sets.entry(point_index_set).or_insert(num_sets);
    }

    // Initialise empty evals vec for each unique commitment
    for commitment_data in commitment_map.iter_mut() {
        let len = commitment_data.point_indices.len();
        commitment_data.evals = vec![Q::Eval::default(); len];
    }

    // Populate set_index, evals and points for each commitment using point_idx_sets
    for query in queries {
        // The index of the point at which the commitment is queried
        let point_index = point_index_map.get(&query.get_point()).unwrap();

        // The point_index_set at which the commitment was queried
        let mut point_index_set = BTreeSet::new();
        for (commitment, point_idx_set) in commitment_set_map.iter() {
            if query.get_commitment() == *commitment {
                point_index_set = point_idx_set.clone();
            }
        }
        assert!(!point_index_set.is_empty());

        // The set_index of the point_index_set
        let set_index = point_idx_sets.get(&point_index_set).unwrap();
        for commitment_data in commitment_map.iter_mut() {
            if query.get_commitment() == commitment_data.commitment {
                commitment_data.set_index = *set_index;
            }
        }
        let point_index_set: Vec<usize> = point_index_set.iter().cloned().collect();

        // The offset of the point_index in the point_index_set
        let point_index_in_set = point_index_set
            .iter()
            .position(|i| i == point_index)
            .unwrap();

        for commitment_data in commitment_map.iter_mut() {
            if query.get_commitment() == commitment_data.commitment {
                // Insert the eval using the ordering of the point_index_set
                commitment_data.evals[point_index_in_set] = query.get_eval();
            }
        }
    }

    // Get actual points in each point set
    let mut point_sets: Vec<Vec<F>> = vec![Vec::new(); point_idx_sets.len()];
    for (point_idx_set, &set_idx) in point_idx_sets.iter() {
        for &point_idx in point_idx_set.iter() {
            let point = inverse_point_index_map.get(&point_idx).unwrap();
            point_sets[set_idx].push(*point);
        }
    }

    (commitment_map, point_sets)
}

#[test]
fn test_roundtrip() {
    use group::Curve;
    use rand_core::OsRng;

    use super::commitment::{Blind, Params};
    use crate::arithmetic::{eval_polynomial, FieldExt};
    use crate::pasta::{EqAffine, Fp};
    use crate::transcript::Challenge255;

    const K: u32 = 4;

    let params: Params<EqAffine> = Params::new(K);
    let domain = EvaluationDomain::new(1, K);
    let rng = OsRng;

    let mut ax = domain.empty_coeff();
    for (i, a) in ax.iter_mut().enumerate() {
        *a = Fp::from(10 + i as u64);
    }

    let mut bx = domain.empty_coeff();
    for (i, a) in bx.iter_mut().enumerate() {
        *a = Fp::from(100 + i as u64);
    }

    let mut cx = domain.empty_coeff();
    for (i, a) in cx.iter_mut().enumerate() {
        *a = Fp::from(100 + i as u64);
    }

    let blind = Blind(Fp::random(rng));

    let a = params.commit(&ax, blind).to_affine();
    let b = params.commit(&bx, blind).to_affine();
    let c = params.commit(&cx, blind).to_affine();

    let x = Fp::random(rng);
    let y = Fp::random(rng);
    let avx = eval_polynomial(&ax, x);
    let bvx = eval_polynomial(&bx, x);
    let cvy = eval_polynomial(&cx, y);

    let mut transcript = crate::transcript::Blake2bWrite::<_, _, Challenge255<_>>::init(vec![]);
    create_proof(
        &params,
        rng,
        &mut transcript,
        std::iter::empty()
            .chain(Some(ProverQuery {
                point: x,
                poly: &ax,
                blind,
            }))
            .chain(Some(ProverQuery {
                point: x,
                poly: &bx,
                blind,
            }))
            .chain(Some(ProverQuery {
                point: y,
                poly: &cx,
                blind,
            })),
    )
    .unwrap();
    let proof = transcript.finalize();

    {
        let mut proof = &proof[..];
        let mut transcript =
            crate::transcript::Blake2bRead::<_, _, Challenge255<_>>::init(&mut proof);
        let msm = params.empty_msm();

        let guard = verify_proof(
            &params,
            &mut transcript,
            std::iter::empty()
                .chain(Some(VerifierQuery::new_commitment(&a, x, avx)))
                .chain(Some(VerifierQuery::new_commitment(&b, x, avx))) // NB: wrong!
                .chain(Some(VerifierQuery::new_commitment(&c, y, cvy))),
            msm,
        )
        .unwrap();

        // Should fail.
        assert!(!guard.use_challenges().eval());
    }

    {
        let mut proof = &proof[..];

        let mut transcript =
            crate::transcript::Blake2bRead::<_, _, Challenge255<_>>::init(&mut proof);
        let msm = params.empty_msm();

        let guard = verify_proof(
            &params,
            &mut transcript,
            std::iter::empty()
                .chain(Some(VerifierQuery::new_commitment(&a, x, avx)))
                .chain(Some(VerifierQuery::new_commitment(&b, x, bvx)))
                .chain(Some(VerifierQuery::new_commitment(&c, y, cvy))),
            msm,
        )
        .unwrap();

        // Should succeed.
        assert!(guard.use_challenges().eval());
    }
}

#[cfg(test)]
mod tests {
    use super::{construct_intermediate_sets, Query};
    use crate::arithmetic::FieldExt;
    use crate::pasta::Fp;

    #[derive(Clone)]
    struct MyQuery<F> {
        commitment: usize,
        point: F,
        eval: F,
    }

    impl<F: Clone + Default> Query<F> for MyQuery<F> {
        type Commitment = usize;
        type Eval = F;

        fn get_point(&self) -> F {
            self.point.clone()
        }
        fn get_eval(&self) -> Self::Eval {
            self.eval.clone()
        }
        fn get_commitment(&self) -> Self::Commitment {
            self.commitment
        }
    }
}

#[cfg(test)]
mod proptests {
    use proptest::{
        collection::vec,
        prelude::*,
        sample::{select, subsequence},
        strategy::Strategy,
    };

    use super::construct_intermediate_sets;
    use crate::poly::Rotation;
    use pasta_curves::{arithmetic::FieldExt, Fp};

    use std::collections::BTreeMap;
    use std::convert::TryFrom;

    #[derive(Debug, Clone)]
    struct MyQuery<F> {
        point: F,
        eval: F,
        commitment: usize,
    }

    impl super::Query<Fp> for MyQuery<Fp> {
        type Commitment = usize;
        type Eval = Fp;

        fn get_point(&self) -> Fp {
            self.point
        }

        fn get_eval(&self) -> Self::Eval {
            self.eval
        }

        fn get_commitment(&self) -> Self::Commitment {
            self.commitment
        }
    }

    prop_compose! {
        fn arb_point()(
            bytes in vec(any::<u8>(), 64)
        ) -> Fp {
            Fp::from_bytes_wide(&<[u8; 64]>::try_from(bytes).unwrap())
        }
    }

    prop_compose! {
        fn arb_query(commitment: usize, point: Fp)(
            eval in arb_point()
        ) -> MyQuery<Fp> {
            MyQuery {
                point,
                eval,
                commitment
            }
        }
    }

    prop_compose! {
        // Mapping from column index to point index.
        fn arb_queries_inner(num_points: usize, num_cols: usize, num_queries: usize)(
            col_indices in vec(select((0..num_cols).collect::<Vec<_>>()), num_queries),
            point_indices in vec(select((0..num_points).collect::<Vec<_>>()), num_queries)
        ) -> Vec<(usize, usize)> {
            col_indices.into_iter().zip(point_indices.into_iter()).collect()
        }
    }

    prop_compose! {
        fn compare_queries(
            num_points: usize,
            num_cols: usize,
            num_queries: usize,
        )(
            points_1 in vec(arb_point(), num_points),
            points_2 in vec(arb_point(), num_points),
            mapping in arb_queries_inner(num_points, num_cols, num_queries)
        )(
            queries_1 in mapping.iter().map(|(commitment, point_idx)| arb_query(*commitment, points_1[*point_idx])).collect::<Vec<_>>(),
            queries_2 in mapping.iter().map(|(commitment, point_idx)| arb_query(*commitment, points_2[*point_idx])).collect::<Vec<_>>(),
        ) -> (
            Vec<MyQuery<Fp>>,
            Vec<MyQuery<Fp>>
        ) {
            (
                queries_1,
                queries_2,
            )
        }
    }

    proptest! {
        #[test]
        fn test_intermediate_sets(
            (queries_1, queries_2) in compare_queries(8, 8, 16)
        ) {
            let (commitment_data, _point_sets) = construct_intermediate_sets(queries_1);
            let set_indices = commitment_data.iter().map(|data| data.set_index).collect::<Vec<_>>();
            let point_indices = commitment_data.iter().map(|data| data.point_indices.clone()).collect::<Vec<_>>();

            // It shouldn't matter what the point or eval values are; we should get
            // the same exact point set indices and point indices again.
            let (new_commitment_data, _new_point_sets) = construct_intermediate_sets(queries_2);
            let new_set_indices = new_commitment_data.iter().map(|data| data.set_index).collect::<Vec<_>>();
            let new_point_indices = new_commitment_data.iter().map(|data| data.point_indices.clone()).collect::<Vec<_>>();

            assert_eq!(set_indices, new_set_indices);
            assert_eq!(point_indices, new_point_indices);
        }
    }
}