ecdsa/
recovery.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
//! Public key recovery support.

use crate::{Error, Result};

#[cfg(feature = "signing")]
use {
    crate::{hazmat::SignPrimitive, SigningKey},
    elliptic_curve::subtle::CtOption,
    signature::{hazmat::PrehashSigner, DigestSigner, Signer},
};

#[cfg(feature = "verifying")]
use {
    crate::{hazmat::VerifyPrimitive, VerifyingKey},
    elliptic_curve::{
        bigint::CheckedAdd,
        ops::{LinearCombination, Reduce},
        point::DecompressPoint,
        sec1::{self, FromEncodedPoint, ToEncodedPoint},
        AffinePoint, FieldBytesEncoding, FieldBytesSize, Group, PrimeField, ProjectivePoint,
    },
    signature::hazmat::PrehashVerifier,
};

#[cfg(any(feature = "signing", feature = "verifying"))]
use {
    crate::{
        hazmat::{bits2field, DigestPrimitive},
        Signature, SignatureSize,
    },
    elliptic_curve::{
        generic_array::ArrayLength, ops::Invert, CurveArithmetic, PrimeCurve, Scalar,
    },
    signature::digest::Digest,
};

/// Recovery IDs, a.k.a. "recid".
///
/// This is an integer value `0`, `1`, `2`, or `3` included along with a
/// signature which is used during the recovery process to select the correct
/// public key from the signature.
///
/// It consists of two bits of information:
///
/// - low bit (0/1): was the y-coordinate of the affine point resulting from
///   the fixed-base multiplication 𝑘×𝑮 odd? This part of the algorithm
///   functions similar to point decompression.
/// - hi bit (3/4): did the affine x-coordinate of 𝑘×𝑮 overflow the order of
///   the scalar field, requiring a reduction when computing `r`?
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct RecoveryId(u8);

impl RecoveryId {
    /// Maximum supported value for the recovery ID (inclusive).
    pub const MAX: u8 = 3;

    /// Create a new [`RecoveryId`] from the following 1-bit arguments:
    ///
    /// - `is_y_odd`: is the affine y-coordinate of 𝑘×𝑮 odd?
    /// - `is_x_reduced`: did the affine x-coordinate of 𝑘×𝑮 overflow the curve order?
    pub const fn new(is_y_odd: bool, is_x_reduced: bool) -> Self {
        Self((is_x_reduced as u8) << 1 | (is_y_odd as u8))
    }

    /// Did the affine x-coordinate of 𝑘×𝑮 overflow the curve order?
    pub const fn is_x_reduced(self) -> bool {
        (self.0 & 0b10) != 0
    }

    /// Is the affine y-coordinate of 𝑘×𝑮 odd?
    pub const fn is_y_odd(self) -> bool {
        (self.0 & 1) != 0
    }

    /// Convert a `u8` into a [`RecoveryId`].
    pub const fn from_byte(byte: u8) -> Option<Self> {
        if byte <= Self::MAX {
            Some(Self(byte))
        } else {
            None
        }
    }

    /// Convert this [`RecoveryId`] into a `u8`.
    pub const fn to_byte(self) -> u8 {
        self.0
    }
}

#[cfg(feature = "verifying")]
impl RecoveryId {
    /// Given a public key, message, and signature, use trial recovery
    /// to determine if a suitable recovery ID exists, or return an error
    /// otherwise.
    pub fn trial_recovery_from_msg<C>(
        verifying_key: &VerifyingKey<C>,
        msg: &[u8],
        signature: &Signature<C>,
    ) -> Result<Self>
    where
        C: DigestPrimitive + PrimeCurve + CurveArithmetic,
        AffinePoint<C>:
            DecompressPoint<C> + FromEncodedPoint<C> + ToEncodedPoint<C> + VerifyPrimitive<C>,
        FieldBytesSize<C>: sec1::ModulusSize,
        SignatureSize<C>: ArrayLength<u8>,
    {
        Self::trial_recovery_from_digest(verifying_key, C::Digest::new_with_prefix(msg), signature)
    }

    /// Given a public key, message digest, and signature, use trial recovery
    /// to determine if a suitable recovery ID exists, or return an error
    /// otherwise.
    pub fn trial_recovery_from_digest<C, D>(
        verifying_key: &VerifyingKey<C>,
        digest: D,
        signature: &Signature<C>,
    ) -> Result<Self>
    where
        C: PrimeCurve + CurveArithmetic,
        D: Digest,
        AffinePoint<C>:
            DecompressPoint<C> + FromEncodedPoint<C> + ToEncodedPoint<C> + VerifyPrimitive<C>,
        FieldBytesSize<C>: sec1::ModulusSize,
        SignatureSize<C>: ArrayLength<u8>,
    {
        Self::trial_recovery_from_prehash(verifying_key, &digest.finalize(), signature)
    }

    /// Given a public key, message digest, and signature, use trial recovery
    /// to determine if a suitable recovery ID exists, or return an error
    /// otherwise.
    pub fn trial_recovery_from_prehash<C>(
        verifying_key: &VerifyingKey<C>,
        prehash: &[u8],
        signature: &Signature<C>,
    ) -> Result<Self>
    where
        C: PrimeCurve + CurveArithmetic,
        AffinePoint<C>:
            DecompressPoint<C> + FromEncodedPoint<C> + ToEncodedPoint<C> + VerifyPrimitive<C>,
        FieldBytesSize<C>: sec1::ModulusSize,
        SignatureSize<C>: ArrayLength<u8>,
    {
        for id in 0..=Self::MAX {
            let recovery_id = RecoveryId(id);

            if let Ok(vk) = VerifyingKey::recover_from_prehash(prehash, signature, recovery_id) {
                if verifying_key == &vk {
                    return Ok(recovery_id);
                }
            }
        }

        Err(Error::new())
    }
}

impl TryFrom<u8> for RecoveryId {
    type Error = Error;

    fn try_from(byte: u8) -> Result<Self> {
        Self::from_byte(byte).ok_or_else(Error::new)
    }
}

impl From<RecoveryId> for u8 {
    fn from(id: RecoveryId) -> u8 {
        id.0
    }
}

#[cfg(feature = "signing")]
impl<C> SigningKey<C>
where
    C: PrimeCurve + CurveArithmetic + DigestPrimitive,
    Scalar<C>: Invert<Output = CtOption<Scalar<C>>> + SignPrimitive<C>,
    SignatureSize<C>: ArrayLength<u8>,
{
    /// Sign the given message prehash, returning a signature and recovery ID.
    pub fn sign_prehash_recoverable(&self, prehash: &[u8]) -> Result<(Signature<C>, RecoveryId)> {
        let z = bits2field::<C>(prehash)?;
        let (sig, recid) = self
            .as_nonzero_scalar()
            .try_sign_prehashed_rfc6979::<C::Digest>(&z, &[])?;

        Ok((sig, recid.ok_or_else(Error::new)?))
    }

    /// Sign the given message digest, returning a signature and recovery ID.
    pub fn sign_digest_recoverable<D>(&self, msg_digest: D) -> Result<(Signature<C>, RecoveryId)>
    where
        D: Digest,
    {
        self.sign_prehash_recoverable(&msg_digest.finalize())
    }

    /// Sign the given message, hashing it with the curve's default digest
    /// function, and returning a signature and recovery ID.
    pub fn sign_recoverable(&self, msg: &[u8]) -> Result<(Signature<C>, RecoveryId)> {
        self.sign_digest_recoverable(C::Digest::new_with_prefix(msg))
    }
}

#[cfg(feature = "signing")]
impl<C, D> DigestSigner<D, (Signature<C>, RecoveryId)> for SigningKey<C>
where
    C: PrimeCurve + CurveArithmetic + DigestPrimitive,
    D: Digest,
    Scalar<C>: Invert<Output = CtOption<Scalar<C>>> + SignPrimitive<C>,
    SignatureSize<C>: ArrayLength<u8>,
{
    fn try_sign_digest(&self, msg_digest: D) -> Result<(Signature<C>, RecoveryId)> {
        self.sign_digest_recoverable(msg_digest)
    }
}

#[cfg(feature = "signing")]
impl<C> PrehashSigner<(Signature<C>, RecoveryId)> for SigningKey<C>
where
    C: PrimeCurve + CurveArithmetic + DigestPrimitive,
    Scalar<C>: Invert<Output = CtOption<Scalar<C>>> + SignPrimitive<C>,
    SignatureSize<C>: ArrayLength<u8>,
{
    fn sign_prehash(&self, prehash: &[u8]) -> Result<(Signature<C>, RecoveryId)> {
        self.sign_prehash_recoverable(prehash)
    }
}

#[cfg(feature = "signing")]
impl<C> Signer<(Signature<C>, RecoveryId)> for SigningKey<C>
where
    C: PrimeCurve + CurveArithmetic + DigestPrimitive,
    Scalar<C>: Invert<Output = CtOption<Scalar<C>>> + SignPrimitive<C>,
    SignatureSize<C>: ArrayLength<u8>,
{
    fn try_sign(&self, msg: &[u8]) -> Result<(Signature<C>, RecoveryId)> {
        self.sign_recoverable(msg)
    }
}

#[cfg(feature = "verifying")]
impl<C> VerifyingKey<C>
where
    C: PrimeCurve + CurveArithmetic,
    AffinePoint<C>:
        DecompressPoint<C> + FromEncodedPoint<C> + ToEncodedPoint<C> + VerifyPrimitive<C>,
    FieldBytesSize<C>: sec1::ModulusSize,
    SignatureSize<C>: ArrayLength<u8>,
{
    /// Recover a [`VerifyingKey`] from the given message, signature, and
    /// [`RecoveryId`].
    ///
    /// The message is first hashed using this curve's [`DigestPrimitive`].
    pub fn recover_from_msg(
        msg: &[u8],
        signature: &Signature<C>,
        recovery_id: RecoveryId,
    ) -> Result<Self>
    where
        C: DigestPrimitive,
    {
        Self::recover_from_digest(C::Digest::new_with_prefix(msg), signature, recovery_id)
    }

    /// Recover a [`VerifyingKey`] from the given message [`Digest`],
    /// signature, and [`RecoveryId`].
    pub fn recover_from_digest<D>(
        msg_digest: D,
        signature: &Signature<C>,
        recovery_id: RecoveryId,
    ) -> Result<Self>
    where
        D: Digest,
    {
        Self::recover_from_prehash(&msg_digest.finalize(), signature, recovery_id)
    }

    /// Recover a [`VerifyingKey`] from the given `prehash` of a message, the
    /// signature over that prehashed message, and a [`RecoveryId`].
    #[allow(non_snake_case)]
    pub fn recover_from_prehash(
        prehash: &[u8],
        signature: &Signature<C>,
        recovery_id: RecoveryId,
    ) -> Result<Self> {
        let (r, s) = signature.split_scalars();
        let z = <Scalar<C> as Reduce<C::Uint>>::reduce_bytes(&bits2field::<C>(prehash)?);

        let mut r_bytes = r.to_repr();
        if recovery_id.is_x_reduced() {
            match Option::<C::Uint>::from(
                C::Uint::decode_field_bytes(&r_bytes).checked_add(&C::ORDER),
            ) {
                Some(restored) => r_bytes = restored.encode_field_bytes(),
                // No reduction should happen here if r was reduced
                None => return Err(Error::new()),
            };
        }
        let R = AffinePoint::<C>::decompress(&r_bytes, u8::from(recovery_id.is_y_odd()).into());

        if R.is_none().into() {
            return Err(Error::new());
        }

        let R = ProjectivePoint::<C>::from(R.unwrap());
        let r_inv = *r.invert();
        let u1 = -(r_inv * z);
        let u2 = r_inv * *s;
        let pk = ProjectivePoint::<C>::lincomb(&ProjectivePoint::<C>::generator(), &u1, &R, &u2);
        let vk = Self::from_affine(pk.into())?;

        // Ensure signature verifies with the recovered key
        vk.verify_prehash(prehash, signature)?;

        Ok(vk)
    }
}

#[cfg(test)]
mod tests {
    use super::RecoveryId;

    #[test]
    fn new() {
        assert_eq!(RecoveryId::new(false, false).to_byte(), 0);
        assert_eq!(RecoveryId::new(true, false).to_byte(), 1);
        assert_eq!(RecoveryId::new(false, true).to_byte(), 2);
        assert_eq!(RecoveryId::new(true, true).to_byte(), 3);
    }

    #[test]
    fn try_from() {
        for n in 0u8..=3 {
            assert_eq!(RecoveryId::try_from(n).unwrap().to_byte(), n);
        }

        for n in 4u8..=255 {
            assert!(RecoveryId::try_from(n).is_err());
        }
    }

    #[test]
    fn is_x_reduced() {
        assert_eq!(RecoveryId::try_from(0).unwrap().is_x_reduced(), false);
        assert_eq!(RecoveryId::try_from(1).unwrap().is_x_reduced(), false);
        assert_eq!(RecoveryId::try_from(2).unwrap().is_x_reduced(), true);
        assert_eq!(RecoveryId::try_from(3).unwrap().is_x_reduced(), true);
    }

    #[test]
    fn is_y_odd() {
        assert_eq!(RecoveryId::try_from(0).unwrap().is_y_odd(), false);
        assert_eq!(RecoveryId::try_from(1).unwrap().is_y_odd(), true);
        assert_eq!(RecoveryId::try_from(2).unwrap().is_y_odd(), false);
        assert_eq!(RecoveryId::try_from(3).unwrap().is_y_odd(), true);
    }
}