pasta_curves/arithmetic/fields.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
//! This module contains the `Field` abstraction that allows us to write
//! code that generalizes over a pair of fields.
use core::mem::size_of;
use static_assertions::const_assert;
#[cfg(feature = "sqrt-table")]
use alloc::{boxed::Box, vec::Vec};
#[cfg(feature = "sqrt-table")]
use core::marker::PhantomData;
#[cfg(feature = "sqrt-table")]
use subtle::Choice;
const_assert!(size_of::<usize>() >= 4);
/// An internal trait that exposes additional operations related to calculating square roots of
/// prime-order finite fields.
pub(crate) trait SqrtTableHelpers: ff::PrimeField {
/// Raise this field element to the power $(t-1)/2$.
///
/// Field implementations may override this to use an efficient addition chain.
fn pow_by_t_minus1_over2(&self) -> Self;
/// Gets the lower 32 bits of this field element when expressed
/// canonically.
fn get_lower_32(&self) -> u32;
}
/// Parameters for a perfect hash function used in square root computation.
#[cfg(feature = "sqrt-table")]
#[cfg_attr(docsrs, doc(cfg(feature = "sqrt-table")))]
#[derive(Debug)]
struct SqrtHasher<F: SqrtTableHelpers> {
hash_xor: u32,
hash_mod: usize,
marker: PhantomData<F>,
}
#[cfg(feature = "sqrt-table")]
impl<F: SqrtTableHelpers> SqrtHasher<F> {
/// Returns a perfect hash of x for use with SqrtTables::inv.
fn hash(&self, x: &F) -> usize {
// This is just the simplest constant-time perfect hash construction that could
// possibly work. The 32 low-order bits are unique within the 2^S order subgroup,
// then the xor acts as "salt" to injectively randomize the output when taken modulo
// `hash_mod`. Since the table is small, we do not need anything more complicated.
((x.get_lower_32() ^ self.hash_xor) as usize) % self.hash_mod
}
}
/// Tables used for square root computation.
#[cfg(feature = "sqrt-table")]
#[cfg_attr(docsrs, doc(cfg(feature = "sqrt-table")))]
#[derive(Debug)]
pub(crate) struct SqrtTables<F: SqrtTableHelpers> {
hasher: SqrtHasher<F>,
inv: Vec<u8>,
g0: Box<[F; 256]>,
g1: Box<[F; 256]>,
g2: Box<[F; 256]>,
g3: Box<[F; 129]>,
}
#[cfg(feature = "sqrt-table")]
impl<F: SqrtTableHelpers> SqrtTables<F> {
/// Build tables given parameters for the perfect hash.
pub fn new(hash_xor: u32, hash_mod: usize) -> Self {
use alloc::vec;
let hasher = SqrtHasher {
hash_xor,
hash_mod,
marker: PhantomData,
};
let mut gtab = (0..4).scan(F::ROOT_OF_UNITY, |gi, _| {
// gi == ROOT_OF_UNITY^(256^i)
let gtab_i: Vec<F> = (0..256)
.scan(F::ONE, |acc, _| {
let res = *acc;
*acc *= *gi;
Some(res)
})
.collect();
*gi = gtab_i[255] * *gi;
Some(gtab_i)
});
let gtab_0 = gtab.next().unwrap();
let gtab_1 = gtab.next().unwrap();
let gtab_2 = gtab.next().unwrap();
let mut gtab_3 = gtab.next().unwrap();
assert_eq!(gtab.next(), None);
// Now invert gtab[3].
let mut inv: Vec<u8> = vec![1; hash_mod];
for (j, gtab_3_j) in gtab_3.iter().enumerate() {
let hash = hasher.hash(gtab_3_j);
// 1 is the last value to be assigned, so this ensures there are no collisions.
assert!(inv[hash] == 1);
inv[hash] = ((256 - j) & 0xFF) as u8;
}
gtab_3.truncate(129);
SqrtTables::<F> {
hasher,
inv,
g0: gtab_0.into_boxed_slice().try_into().unwrap(),
g1: gtab_1.into_boxed_slice().try_into().unwrap(),
g2: gtab_2.into_boxed_slice().try_into().unwrap(),
g3: gtab_3.into_boxed_slice().try_into().unwrap(),
}
}
/// Computes:
///
/// * (true, sqrt(num/div)), if num and div are nonzero and num/div is a square in the field;
/// * (true, 0), if num is zero;
/// * (false, 0), if num is nonzero and div is zero;
/// * (false, sqrt(ROOT_OF_UNITY * num/div)), if num and div are nonzero and num/div is a nonsquare in the field;
///
/// where ROOT_OF_UNITY is a generator of the order 2^n subgroup (and therefore a nonsquare).
///
/// The choice of root from sqrt is unspecified.
pub fn sqrt_ratio(&self, num: &F, div: &F) -> (Choice, F) {
// Based on:
// * [Sarkar2020](https://eprint.iacr.org/2020/1407)
// * [BDLSY2012](https://cr.yp.to/papers.html#ed25519)
//
// We need to calculate uv and v, where v = u^((T-1)/2), u = num/div, and p-1 = T * 2^S.
// We can rewrite as follows:
//
// v = (num/div)^((T-1)/2)
// = num^((T-1)/2) * div^(p-1 - (T-1)/2) [Fermat's Little Theorem]
// = " * div^(T * 2^S - (T-1)/2)
// = " * div^((2^(S+1) - 1)*(T-1)/2 + 2^S)
// = (num * div^(2^(S+1) - 1))^((T-1)/2) * div^(2^S)
//
// Let w = (num * div^(2^(S+1) - 1))^((T-1)/2) * div^(2^S - 1).
// Then v = w * div, and uv = num * v / div = num * w.
//
// We calculate:
//
// s = div^(2^S - 1) using an addition chain
// t = div^(2^(S+1) - 1) = s^2 * div
// w = (num * t)^((T-1)/2) * s using another addition chain
//
// then u and uv as above. The addition chains are given in
// https://github.com/zcash/pasta/blob/master/addchain_sqrt.py .
// The overall cost of this part is similar to a single full-width exponentiation,
// regardless of S.
let sqr = |x: F, i: u32| (0..i).fold(x, |x, _| x.square());
// s = div^(2^S - 1)
let s = (0..5).fold(*div, |d: F, i| sqr(d, 1 << i) * d);
// t == div^(2^(S+1) - 1)
let t = s.square() * div;
// w = (num * t)^((T-1)/2) * s
let w = (t * num).pow_by_t_minus1_over2() * s;
// v == u^((T-1)/2)
let v = w * div;
// uv = u * v
let uv = w * num;
let res = self.sqrt_common(&uv, &v);
let sqdiv = res.square() * div;
let is_square = (sqdiv - num).is_zero();
let is_nonsquare = (sqdiv - F::ROOT_OF_UNITY * num).is_zero();
assert!(bool::from(
num.is_zero() | div.is_zero() | (is_square ^ is_nonsquare)
));
(is_square, res)
}
/// Same as sqrt_ratio(u, one()) but more efficient.
pub fn sqrt_alt(&self, u: &F) -> (Choice, F) {
let v = u.pow_by_t_minus1_over2();
let uv = *u * v;
let res = self.sqrt_common(&uv, &v);
let sq = res.square();
let is_square = (sq - u).is_zero();
let is_nonsquare = (sq - F::ROOT_OF_UNITY * u).is_zero();
assert!(bool::from(u.is_zero() | (is_square ^ is_nonsquare)));
(is_square, res)
}
/// Common part of sqrt_ratio and sqrt_alt: return their result given v = u^((T-1)/2) and uv = u * v.
fn sqrt_common(&self, uv: &F, v: &F) -> F {
let sqr = |x: F, i: u32| (0..i).fold(x, |x, _| x.square());
let inv = |x: F| self.inv[self.hasher.hash(&x)] as usize;
let x3 = *uv * v;
let x2 = sqr(x3, 8);
let x1 = sqr(x2, 8);
let x0 = sqr(x1, 8);
// i = 0, 1
let mut t_ = inv(x0); // = t >> 16
// 1 == x0 * ROOT_OF_UNITY^(t_ << 24)
assert!(t_ < 0x100);
let alpha = x1 * self.g2[t_];
// i = 2
t_ += inv(alpha) << 8; // = t >> 8
// 1 == x1 * ROOT_OF_UNITY^(t_ << 16)
assert!(t_ < 0x10000);
let alpha = x2 * self.g1[t_ & 0xFF] * self.g2[t_ >> 8];
// i = 3
t_ += inv(alpha) << 16; // = t
// 1 == x2 * ROOT_OF_UNITY^(t_ << 8)
assert!(t_ < 0x1000000);
let alpha = x3 * self.g0[t_ & 0xFF] * self.g1[(t_ >> 8) & 0xFF] * self.g2[t_ >> 16];
t_ += inv(alpha) << 24; // = t << 1
// 1 == x3 * ROOT_OF_UNITY^t_
t_ = (((t_ as u64) + 1) >> 1) as usize;
assert!(t_ <= 0x80000000);
*uv * self.g0[t_ & 0xFF]
* self.g1[(t_ >> 8) & 0xFF]
* self.g2[(t_ >> 16) & 0xFF]
* self.g3[t_ >> 24]
}
}
/// Compute a + b + carry, returning the result and the new carry over.
#[inline(always)]
pub(crate) const fn adc(a: u64, b: u64, carry: u64) -> (u64, u64) {
let ret = (a as u128) + (b as u128) + (carry as u128);
(ret as u64, (ret >> 64) as u64)
}
/// Compute a - (b + borrow), returning the result and the new borrow.
#[inline(always)]
pub(crate) const fn sbb(a: u64, b: u64, borrow: u64) -> (u64, u64) {
let ret = (a as u128).wrapping_sub((b as u128) + ((borrow >> 63) as u128));
(ret as u64, (ret >> 64) as u64)
}
/// Compute a + (b * c) + carry, returning the result and the new carry over.
#[inline(always)]
pub(crate) const fn mac(a: u64, b: u64, c: u64, carry: u64) -> (u64, u64) {
let ret = (a as u128) + ((b as u128) * (c as u128)) + (carry as u128);
(ret as u64, (ret >> 64) as u64)
}