ruint/base_convert.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
use crate::{
algorithms::{addmul_nx1, mul_nx1},
Uint,
};
use core::fmt;
/// Error for [`from_base_le`][Uint::from_base_le] and
/// [`from_base_be`][Uint::from_base_be].
#[allow(clippy::module_name_repetitions)]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum BaseConvertError {
/// The value is too large to fit the target type.
Overflow,
/// The requested number base `.0` is less than two.
InvalidBase(u64),
/// The provided digit `.0` is out of range for requested base `.1`.
InvalidDigit(u64, u64),
}
#[cfg(feature = "std")]
impl std::error::Error for BaseConvertError {}
impl fmt::Display for BaseConvertError {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Overflow => f.write_str("the value is too large to fit the target type"),
Self::InvalidBase(base) => {
write!(f, "the requested number base {base} is less than two")
}
Self::InvalidDigit(digit, base) => {
write!(f, "digit {digit} is out of range for base {base}")
}
}
}
}
impl<const BITS: usize, const LIMBS: usize> Uint<BITS, LIMBS> {
/// Returns an iterator over the base `base` digits of the number in
/// little-endian order.
///
/// Pro tip: instead of setting `base = 10`, set it to the highest
/// power of `10` that still fits `u64`. This way much fewer iterations
/// are required to extract all the digits.
// OPT: Internalize this trick so the user won't have to worry about it.
/// # Panics
///
/// Panics if the base is less than 2.
#[inline]
pub fn to_base_le(&self, base: u64) -> impl Iterator<Item = u64> {
assert!(base > 1);
SpigotLittle {
base,
limbs: self.limbs,
}
}
/// Returns an iterator over the base `base` digits of the number in
/// big-endian order.
///
/// Pro tip: instead of setting `base = 10`, set it to the highest
/// power of `10` that still fits `u64`. This way much fewer iterations
/// are required to extract all the digits.
///
/// # Panics
///
/// Panics if the base is less than 2.
#[inline]
#[cfg(feature = "alloc")] // OPT: Find an allocation free method. Maybe extract from the top?
pub fn to_base_be(&self, base: u64) -> impl Iterator<Item = u64> {
struct OwnedVecIterator {
vec: alloc::vec::Vec<u64>,
}
impl Iterator for OwnedVecIterator {
type Item = u64;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.vec.pop()
}
}
assert!(base > 1);
OwnedVecIterator {
vec: self.to_base_le(base).collect(),
}
}
/// Constructs the [`Uint`] from digits in the base `base` in little-endian.
///
/// # Errors
///
/// * [`BaseConvertError::InvalidBase`] if the base is less than 2.
/// * [`BaseConvertError::InvalidDigit`] if a digit is out of range.
/// * [`BaseConvertError::Overflow`] if the number is too large to fit.
#[inline]
pub fn from_base_le<I>(base: u64, digits: I) -> Result<Self, BaseConvertError>
where
I: IntoIterator<Item = u64>,
{
if base < 2 {
return Err(BaseConvertError::InvalidBase(base));
}
if BITS == 0 {
for digit in digits {
if digit >= base {
return Err(BaseConvertError::InvalidDigit(digit, base));
}
if digit != 0 {
return Err(BaseConvertError::Overflow);
}
}
return Ok(Self::ZERO);
}
let mut iter = digits.into_iter();
let mut result = Self::ZERO;
let mut power = Self::from(1);
for digit in iter.by_ref() {
if digit >= base {
return Err(BaseConvertError::InvalidDigit(digit, base));
}
// Add digit to result
let overflow = addmul_nx1(&mut result.limbs, power.as_limbs(), digit);
if overflow != 0 || result.limbs[LIMBS - 1] > Self::MASK {
return Err(BaseConvertError::Overflow);
}
// Update power
let overflow = mul_nx1(&mut power.limbs, base);
if overflow != 0 || power.limbs[LIMBS - 1] > Self::MASK {
// Following digits must be zero
break;
}
}
for digit in iter {
if digit >= base {
return Err(BaseConvertError::InvalidDigit(digit, base));
}
if digit != 0 {
return Err(BaseConvertError::Overflow);
}
}
Ok(result)
}
/// Constructs the [`Uint`] from digits in the base `base` in big-endian.
///
/// # Errors
///
/// * [`BaseConvertError::InvalidBase`] if the base is less than 2.
/// * [`BaseConvertError::InvalidDigit`] if a digit is out of range.
/// * [`BaseConvertError::Overflow`] if the number is too large to fit.
#[inline]
pub fn from_base_be<I: IntoIterator<Item = u64>>(
base: u64,
digits: I,
) -> Result<Self, BaseConvertError> {
// OPT: Special handling of bases that divide 2^64, and bases that are
// powers of 2.
// OPT: Same trick as with `to_base_le`, find the largest power of base
// that fits `u64` and accumulate there first.
if base < 2 {
return Err(BaseConvertError::InvalidBase(base));
}
let mut result = Self::ZERO;
for digit in digits {
if digit >= base {
return Err(BaseConvertError::InvalidDigit(digit, base));
}
// Multiply by base.
// OPT: keep track of non-zero limbs and mul the minimum.
let mut carry: u128 = u128::from(digit);
#[allow(clippy::cast_possible_truncation)]
for limb in &mut result.limbs {
carry += u128::from(*limb) * u128::from(base);
*limb = carry as u64;
carry >>= 64;
}
if carry > 0 || (LIMBS != 0 && result.limbs[LIMBS - 1] > Self::MASK) {
return Err(BaseConvertError::Overflow);
}
}
Ok(result)
}
}
struct SpigotLittle<const LIMBS: usize> {
base: u64,
limbs: [u64; LIMBS],
}
impl<const LIMBS: usize> Iterator for SpigotLittle<LIMBS> {
type Item = u64;
#[inline]
#[allow(clippy::cast_possible_truncation)] // Doesn't truncate
fn next(&mut self) -> Option<Self::Item> {
// Knuth Algorithm S.
let mut zero: u64 = 0_u64;
let mut remainder = 0_u128;
// OPT: If we keep track of leading zero limbs we can half iterations.
for limb in self.limbs.iter_mut().rev() {
zero |= *limb;
remainder = (remainder << 64) | u128::from(*limb);
*limb = (remainder / u128::from(self.base)) as u64;
remainder %= u128::from(self.base);
}
if zero == 0 {
None
} else {
Some(remainder as u64)
}
}
}
#[cfg(test)]
#[allow(clippy::unreadable_literal)]
#[allow(clippy::zero_prefixed_literal)]
mod tests {
use super::*;
// 90630363884335538722706632492458228784305343302099024356772372330524102404852
const N: Uint<256, 4> = Uint::from_limbs([
0xa8ec92344438aaf4_u64,
0x9819ebdbd1faaab1_u64,
0x573b1a7064c19c1a_u64,
0xc85ef7d79691fe79_u64,
]);
#[test]
fn test_to_base_le() {
assert_eq!(
Uint::<64, 1>::from(123456789)
.to_base_le(10)
.collect::<Vec<_>>(),
vec![9, 8, 7, 6, 5, 4, 3, 2, 1]
);
assert_eq!(
N.to_base_le(10000000000000000000_u64).collect::<Vec<_>>(),
vec![
2372330524102404852,
0534330209902435677,
7066324924582287843,
0630363884335538722,
9
]
);
}
#[test]
fn test_from_base_le() {
assert_eq!(
Uint::<64, 1>::from_base_le(10, [9, 8, 7, 6, 5, 4, 3, 2, 1]),
Ok(Uint::<64, 1>::from(123456789))
);
assert_eq!(
Uint::<256, 4>::from_base_le(10000000000000000000_u64, [
2372330524102404852,
0534330209902435677,
7066324924582287843,
0630363884335538722,
9
])
.unwrap(),
N
);
}
#[test]
fn test_to_base_be() {
assert_eq!(
Uint::<64, 1>::from(123456789)
.to_base_be(10)
.collect::<Vec<_>>(),
vec![1, 2, 3, 4, 5, 6, 7, 8, 9]
);
assert_eq!(
N.to_base_be(10000000000000000000_u64).collect::<Vec<_>>(),
vec![
9,
0630363884335538722,
7066324924582287843,
0534330209902435677,
2372330524102404852
]
);
}
#[test]
fn test_from_base_be() {
assert_eq!(
Uint::<64, 1>::from_base_be(10, [1, 2, 3, 4, 5, 6, 7, 8, 9]),
Ok(Uint::<64, 1>::from(123456789))
);
assert_eq!(
Uint::<256, 4>::from_base_be(10000000000000000000_u64, [
9,
0630363884335538722,
7066324924582287843,
0534330209902435677,
2372330524102404852
])
.unwrap(),
N
);
}
#[test]
fn test_from_base_be_overflow() {
assert_eq!(
Uint::<0, 0>::from_base_be(10, std::iter::empty()),
Ok(Uint::<0, 0>::ZERO)
);
assert_eq!(
Uint::<0, 0>::from_base_be(10, std::iter::once(0)),
Ok(Uint::<0, 0>::ZERO)
);
assert_eq!(
Uint::<0, 0>::from_base_be(10, std::iter::once(1)),
Err(BaseConvertError::Overflow)
);
assert_eq!(
Uint::<1, 1>::from_base_be(10, [1, 0, 0].into_iter()),
Err(BaseConvertError::Overflow)
);
}
}