der/asn1/
bit_string.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
//! ASN.1 `BIT STRING` support.

use crate::{
    BytesRef, DecodeValue, DerOrd, EncodeValue, Error, ErrorKind, FixedTag, Header, Length, Reader,
    Result, Tag, ValueOrd, Writer,
};
use core::{cmp::Ordering, iter::FusedIterator};

/// ASN.1 `BIT STRING` type.
///
/// This type contains a sequence of any number of bits, modeled internally as
/// a sequence of bytes with a known number of "unused bits".
///
/// This is a zero-copy reference type which borrows from the input data.
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct BitStringRef<'a> {
    /// Number of unused bits in the final octet.
    unused_bits: u8,

    /// Length of this `BIT STRING` in bits.
    bit_length: usize,

    /// Bitstring represented as a slice of bytes.
    inner: BytesRef<'a>,
}

impl<'a> BitStringRef<'a> {
    /// Maximum number of unused bits allowed.
    pub const MAX_UNUSED_BITS: u8 = 7;

    /// Create a new ASN.1 `BIT STRING` from a byte slice.
    ///
    /// Accepts an optional number of "unused bits" (0-7) which are omitted
    /// from the final octet. This number is 0 if the value is octet-aligned.
    pub fn new(unused_bits: u8, bytes: &'a [u8]) -> Result<Self> {
        if (unused_bits > Self::MAX_UNUSED_BITS) || (unused_bits != 0 && bytes.is_empty()) {
            return Err(Self::TAG.value_error());
        }

        let inner = BytesRef::new(bytes).map_err(|_| Self::TAG.length_error())?;

        let bit_length = usize::try_from(inner.len())?
            .checked_mul(8)
            .and_then(|n| n.checked_sub(usize::from(unused_bits)))
            .ok_or(ErrorKind::Overflow)?;

        Ok(Self {
            unused_bits,
            bit_length,
            inner,
        })
    }

    /// Create a new ASN.1 `BIT STRING` from the given bytes.
    ///
    /// The "unused bits" are set to 0.
    pub fn from_bytes(bytes: &'a [u8]) -> Result<Self> {
        Self::new(0, bytes)
    }

    /// Get the number of unused bits in this byte slice.
    pub fn unused_bits(&self) -> u8 {
        self.unused_bits
    }

    /// Is the number of unused bits a value other than 0?
    pub fn has_unused_bits(&self) -> bool {
        self.unused_bits != 0
    }

    /// Get the length of this `BIT STRING` in bits.
    pub fn bit_len(&self) -> usize {
        self.bit_length
    }

    /// Get the number of bytes/octets needed to represent this `BIT STRING`
    /// when serialized in an octet-aligned manner.
    pub fn byte_len(&self) -> Length {
        self.inner.len()
    }

    /// Is the inner byte slice empty?
    pub fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    /// Borrow the inner byte slice.
    ///
    /// Returns `None` if the number of unused bits is *not* equal to zero,
    /// i.e. if the `BIT STRING` is not octet aligned.
    ///
    /// Use [`BitString::raw_bytes`] to obtain access to the raw value
    /// regardless of the presence of unused bits.
    pub fn as_bytes(&self) -> Option<&'a [u8]> {
        if self.has_unused_bits() {
            None
        } else {
            Some(self.raw_bytes())
        }
    }

    /// Borrow the raw bytes of this `BIT STRING`.
    ///
    /// Note that the byte string may contain extra unused bits in the final
    /// octet. If the number of unused bits is expected to be 0, the
    /// [`BitStringRef::as_bytes`] function can be used instead.
    pub fn raw_bytes(&self) -> &'a [u8] {
        self.inner.as_slice()
    }

    /// Iterator over the bits of this `BIT STRING`.
    pub fn bits(self) -> BitStringIter<'a> {
        BitStringIter {
            bit_string: self,
            position: 0,
        }
    }
}

impl_any_conversions!(BitStringRef<'a>, 'a);

impl<'a> DecodeValue<'a> for BitStringRef<'a> {
    fn decode_value<R: Reader<'a>>(reader: &mut R, header: Header) -> Result<Self> {
        let header = Header {
            tag: header.tag,
            length: (header.length - Length::ONE)?,
        };

        let unused_bits = reader.read_byte()?;
        let inner = BytesRef::decode_value(reader, header)?;
        Self::new(unused_bits, inner.as_slice())
    }
}

impl EncodeValue for BitStringRef<'_> {
    fn value_len(&self) -> Result<Length> {
        self.byte_len() + Length::ONE
    }

    fn encode_value(&self, writer: &mut impl Writer) -> Result<()> {
        writer.write_byte(self.unused_bits)?;
        writer.write(self.raw_bytes())
    }
}

impl ValueOrd for BitStringRef<'_> {
    fn value_cmp(&self, other: &Self) -> Result<Ordering> {
        match self.unused_bits.cmp(&other.unused_bits) {
            Ordering::Equal => self.inner.der_cmp(&other.inner),
            ordering => Ok(ordering),
        }
    }
}

impl<'a> From<&BitStringRef<'a>> for BitStringRef<'a> {
    fn from(value: &BitStringRef<'a>) -> BitStringRef<'a> {
        *value
    }
}

impl<'a> TryFrom<&'a [u8]> for BitStringRef<'a> {
    type Error = Error;

    fn try_from(bytes: &'a [u8]) -> Result<BitStringRef<'a>> {
        BitStringRef::from_bytes(bytes)
    }
}

/// Hack for simplifying the custom derive use case.
impl<'a> TryFrom<&&'a [u8]> for BitStringRef<'a> {
    type Error = Error;

    fn try_from(bytes: &&'a [u8]) -> Result<BitStringRef<'a>> {
        BitStringRef::from_bytes(bytes)
    }
}

impl<'a> TryFrom<BitStringRef<'a>> for &'a [u8] {
    type Error = Error;

    fn try_from(bit_string: BitStringRef<'a>) -> Result<&'a [u8]> {
        bit_string
            .as_bytes()
            .ok_or_else(|| Tag::BitString.value_error())
    }
}

impl<'a> FixedTag for BitStringRef<'a> {
    const TAG: Tag = Tag::BitString;
}

// Implement by hand because the derive would create invalid values.
// Use the constructor to create a valid value.
#[cfg(feature = "arbitrary")]
impl<'a> arbitrary::Arbitrary<'a> for BitStringRef<'a> {
    fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
        Self::new(
            u.int_in_range(0..=Self::MAX_UNUSED_BITS)?,
            BytesRef::arbitrary(u)?.as_slice(),
        )
        .map_err(|_| arbitrary::Error::IncorrectFormat)
    }

    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        arbitrary::size_hint::and(u8::size_hint(depth), BytesRef::size_hint(depth))
    }
}

#[cfg(feature = "alloc")]
pub use self::allocating::BitString;

#[cfg(feature = "alloc")]
mod allocating {
    use super::*;
    use crate::referenced::*;
    use alloc::vec::Vec;

    /// Owned form of ASN.1 `BIT STRING` type.
    ///
    /// This type provides the same functionality as [`BitStringRef`] but owns the
    /// backing data.
    #[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
    pub struct BitString {
        /// Number of unused bits in the final octet.
        unused_bits: u8,

        /// Length of this `BIT STRING` in bits.
        bit_length: usize,

        /// Bitstring represented as a slice of bytes.
        inner: Vec<u8>,
    }

    impl BitString {
        /// Maximum number of unused bits allowed.
        pub const MAX_UNUSED_BITS: u8 = 7;

        /// Create a new ASN.1 `BIT STRING` from a byte slice.
        ///
        /// Accepts an optional number of "unused bits" (0-7) which are omitted
        /// from the final octet. This number is 0 if the value is octet-aligned.
        pub fn new(unused_bits: u8, bytes: impl Into<Vec<u8>>) -> Result<Self> {
            let inner = bytes.into();

            // Ensure parameters parse successfully as a `BitStringRef`.
            let bit_length = BitStringRef::new(unused_bits, &inner)?.bit_length;

            Ok(BitString {
                unused_bits,
                bit_length,
                inner,
            })
        }

        /// Create a new ASN.1 `BIT STRING` from the given bytes.
        ///
        /// The "unused bits" are set to 0.
        pub fn from_bytes(bytes: &[u8]) -> Result<Self> {
            Self::new(0, bytes)
        }

        /// Get the number of unused bits in the octet serialization of this
        /// `BIT STRING`.
        pub fn unused_bits(&self) -> u8 {
            self.unused_bits
        }

        /// Is the number of unused bits a value other than 0?
        pub fn has_unused_bits(&self) -> bool {
            self.unused_bits != 0
        }

        /// Get the length of this `BIT STRING` in bits.
        pub fn bit_len(&self) -> usize {
            self.bit_length
        }

        /// Is the inner byte slice empty?
        pub fn is_empty(&self) -> bool {
            self.inner.is_empty()
        }

        /// Borrow the inner byte slice.
        ///
        /// Returns `None` if the number of unused bits is *not* equal to zero,
        /// i.e. if the `BIT STRING` is not octet aligned.
        ///
        /// Use [`BitString::raw_bytes`] to obtain access to the raw value
        /// regardless of the presence of unused bits.
        pub fn as_bytes(&self) -> Option<&[u8]> {
            if self.has_unused_bits() {
                None
            } else {
                Some(self.raw_bytes())
            }
        }

        /// Borrow the raw bytes of this `BIT STRING`.
        pub fn raw_bytes(&self) -> &[u8] {
            self.inner.as_slice()
        }

        /// Iterator over the bits of this `BIT STRING`.
        pub fn bits(&self) -> BitStringIter<'_> {
            BitStringRef::from(self).bits()
        }
    }

    impl_any_conversions!(BitString);

    impl<'a> DecodeValue<'a> for BitString {
        fn decode_value<R: Reader<'a>>(reader: &mut R, header: Header) -> Result<Self> {
            let inner_len = (header.length - Length::ONE)?;
            let unused_bits = reader.read_byte()?;
            let inner = reader.read_vec(inner_len)?;
            Self::new(unused_bits, inner)
        }
    }

    impl EncodeValue for BitString {
        fn value_len(&self) -> Result<Length> {
            Length::ONE + Length::try_from(self.inner.len())?
        }

        fn encode_value(&self, writer: &mut impl Writer) -> Result<()> {
            writer.write_byte(self.unused_bits)?;
            writer.write(&self.inner)
        }
    }

    impl FixedTag for BitString {
        const TAG: Tag = Tag::BitString;
    }

    impl<'a> From<&'a BitString> for BitStringRef<'a> {
        fn from(bit_string: &'a BitString) -> BitStringRef<'a> {
            // Ensured to parse successfully in constructor
            BitStringRef::new(bit_string.unused_bits, &bit_string.inner)
                .expect("invalid BIT STRING")
        }
    }

    impl ValueOrd for BitString {
        fn value_cmp(&self, other: &Self) -> Result<Ordering> {
            match self.unused_bits.cmp(&other.unused_bits) {
                Ordering::Equal => self.inner.der_cmp(&other.inner),
                ordering => Ok(ordering),
            }
        }
    }

    // Implement by hand because the derive would create invalid values.
    // Use the constructor to create a valid value.
    #[cfg(feature = "arbitrary")]
    impl<'a> arbitrary::Arbitrary<'a> for BitString {
        fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
            Self::new(
                u.int_in_range(0..=Self::MAX_UNUSED_BITS)?,
                BytesRef::arbitrary(u)?.as_slice(),
            )
            .map_err(|_| arbitrary::Error::IncorrectFormat)
        }

        fn size_hint(depth: usize) -> (usize, Option<usize>) {
            arbitrary::size_hint::and(u8::size_hint(depth), BytesRef::size_hint(depth))
        }
    }

    impl<'a> RefToOwned<'a> for BitStringRef<'a> {
        type Owned = BitString;
        fn ref_to_owned(&self) -> Self::Owned {
            BitString {
                unused_bits: self.unused_bits,
                bit_length: self.bit_length,
                inner: Vec::from(self.inner.as_slice()),
            }
        }
    }

    impl OwnedToRef for BitString {
        type Borrowed<'a> = BitStringRef<'a>;
        fn owned_to_ref(&self) -> Self::Borrowed<'_> {
            self.into()
        }
    }
}

/// Iterator over the bits of a [`BitString`].
pub struct BitStringIter<'a> {
    /// [`BitString`] being iterated over.
    bit_string: BitStringRef<'a>,

    /// Current bit position within the iterator.
    position: usize,
}

impl<'a> Iterator for BitStringIter<'a> {
    type Item = bool;

    #[allow(clippy::integer_arithmetic)]
    fn next(&mut self) -> Option<bool> {
        if self.position >= self.bit_string.bit_len() {
            return None;
        }

        let byte = self.bit_string.raw_bytes().get(self.position / 8)?;
        let bit = 1u8 << (7 - (self.position % 8));
        self.position = self.position.checked_add(1)?;
        Some(byte & bit != 0)
    }
}

impl<'a> ExactSizeIterator for BitStringIter<'a> {
    fn len(&self) -> usize {
        self.bit_string.bit_len()
    }
}

impl<'a> FusedIterator for BitStringIter<'a> {}

#[cfg(feature = "flagset")]
impl<T: flagset::Flags> FixedTag for flagset::FlagSet<T> {
    const TAG: Tag = BitStringRef::TAG;
}

#[cfg(feature = "flagset")]
impl<T> ValueOrd for flagset::FlagSet<T>
where
    T: flagset::Flags,
    T::Type: Ord,
{
    fn value_cmp(&self, other: &Self) -> Result<Ordering> {
        Ok(self.bits().cmp(&other.bits()))
    }
}

#[cfg(feature = "flagset")]
#[allow(clippy::integer_arithmetic)]
impl<'a, T> DecodeValue<'a> for flagset::FlagSet<T>
where
    T: flagset::Flags,
    T::Type: From<bool>,
    T::Type: core::ops::Shl<usize, Output = T::Type>,
{
    fn decode_value<R: Reader<'a>>(reader: &mut R, header: Header) -> Result<Self> {
        let position = reader.position();
        let bits = BitStringRef::decode_value(reader, header)?;

        let mut flags = T::none().bits();

        if bits.bit_len() > core::mem::size_of_val(&flags) * 8 {
            return Err(Error::new(ErrorKind::Overlength, position));
        }

        for (i, bit) in bits.bits().enumerate() {
            flags |= T::Type::from(bit) << i;
        }

        Ok(Self::new_truncated(flags))
    }
}

#[cfg(feature = "flagset")]
#[allow(clippy::integer_arithmetic)]
#[inline(always)]
fn encode_flagset<T>(set: &flagset::FlagSet<T>) -> (usize, [u8; 16])
where
    T: flagset::Flags,
    u128: From<T::Type>,
{
    let bits: u128 = set.bits().into();
    let mut swap = 0u128;

    for i in 0..128 {
        let on = bits & (1 << i);
        swap |= on >> i << (128 - i - 1);
    }

    (bits.leading_zeros() as usize, swap.to_be_bytes())
}

#[cfg(feature = "flagset")]
#[allow(clippy::cast_possible_truncation, clippy::integer_arithmetic)]
impl<T: flagset::Flags> EncodeValue for flagset::FlagSet<T>
where
    T::Type: From<bool>,
    T::Type: core::ops::Shl<usize, Output = T::Type>,
    u128: From<T::Type>,
{
    fn value_len(&self) -> Result<Length> {
        let (lead, buff) = encode_flagset(self);
        let buff = &buff[..buff.len() - lead / 8];
        BitStringRef::new((lead % 8) as u8, buff)?.value_len()
    }

    fn encode_value(&self, writer: &mut impl Writer) -> Result<()> {
        let (lead, buff) = encode_flagset(self);
        let buff = &buff[..buff.len() - lead / 8];
        BitStringRef::new((lead % 8) as u8, buff)?.encode_value(writer)
    }
}

#[cfg(test)]
mod tests {
    use super::{BitStringRef, Result, Tag};
    use crate::asn1::AnyRef;
    use hex_literal::hex;

    /// Parse a `BitString` from an ASN.1 `Any` value to test decoding behaviors.
    fn parse_bitstring(bytes: &[u8]) -> Result<BitStringRef<'_>> {
        AnyRef::new(Tag::BitString, bytes)?.try_into()
    }

    #[test]
    fn decode_empty_bitstring() {
        let bs = parse_bitstring(&hex!("00")).unwrap();
        assert_eq!(bs.as_bytes().unwrap(), &[]);
    }

    #[test]
    fn decode_non_empty_bitstring() {
        let bs = parse_bitstring(&hex!("00010203")).unwrap();
        assert_eq!(bs.as_bytes().unwrap(), &[0x01, 0x02, 0x03]);
    }

    #[test]
    fn decode_bitstring_with_unused_bits() {
        let bs = parse_bitstring(&hex!("066e5dc0")).unwrap();
        assert_eq!(bs.unused_bits(), 6);
        assert_eq!(bs.raw_bytes(), &hex!("6e5dc0"));

        // Expected: 011011100101110111
        let mut bits = bs.bits();
        assert_eq!(bits.len(), 18);

        for bit in [0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1] {
            assert_eq!(u8::from(bits.next().unwrap()), bit)
        }

        // Ensure `None` is returned on successive calls
        assert_eq!(bits.next(), None);
        assert_eq!(bits.next(), None);
    }

    #[test]
    fn reject_unused_bits_in_empty_string() {
        assert_eq!(
            parse_bitstring(&[0x03]).err().unwrap().kind(),
            Tag::BitString.value_error().kind()
        )
    }
}