halo2_axiom/poly/ipa/
msm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
use crate::arithmetic::{best_multiexp, CurveAffine};
use crate::poly::{commitment::MSM, ipa::commitment::ParamsVerifierIPA};
use ff::Field;
use group::Group;
use std::collections::BTreeMap;

/// A multiscalar multiplication in the polynomial commitment scheme
#[derive(Debug, Clone)]
pub struct MSMIPA<'params, C: CurveAffine> {
    pub(crate) params: &'params ParamsVerifierIPA<C>,
    g_scalars: Option<Vec<C::Scalar>>,
    w_scalar: Option<C::Scalar>,
    u_scalar: Option<C::Scalar>,
    // x-coordinate -> (scalar, y-coordinate)
    other: BTreeMap<C::Base, (C::Scalar, C::Base)>,
}

impl<'a, C: CurveAffine> MSMIPA<'a, C> {
    /// Given verifier parameters Creates an empty multi scalar engine
    pub fn new(params: &'a ParamsVerifierIPA<C>) -> Self {
        let g_scalars = None;
        let w_scalar = None;
        let u_scalar = None;
        let other = BTreeMap::new();

        Self {
            g_scalars,
            w_scalar,
            u_scalar,
            other,

            params,
        }
    }

    /// Add another multiexp into this one
    pub fn add_msm(&mut self, other: &Self) {
        for (x, (scalar, y)) in other.other.iter() {
            self.other
                .entry(*x)
                .and_modify(|(our_scalar, our_y)| {
                    if our_y == y {
                        *our_scalar += *scalar;
                    } else {
                        assert!(*our_y == -*y);
                        *our_scalar -= *scalar;
                    }
                })
                .or_insert((*scalar, *y));
        }

        if let Some(g_scalars) = &other.g_scalars {
            self.add_to_g_scalars(g_scalars);
        }

        if let Some(w_scalar) = &other.w_scalar {
            self.add_to_w_scalar(*w_scalar);
        }

        if let Some(u_scalar) = &other.u_scalar {
            self.add_to_u_scalar(*u_scalar);
        }
    }
}

impl<'a, C: CurveAffine> MSM<C> for MSMIPA<'a, C> {
    fn append_term(&mut self, scalar: C::Scalar, point: C::Curve) {
        if !bool::from(point.is_identity()) {
            use group::Curve;
            let point = point.to_affine();
            let xy = point.coordinates().unwrap();
            let x = *xy.x();
            let y = *xy.y();

            self.other
                .entry(x)
                .and_modify(|(our_scalar, our_y)| {
                    if *our_y == y {
                        *our_scalar += scalar;
                    } else {
                        assert!(*our_y == -y);
                        *our_scalar -= scalar;
                    }
                })
                .or_insert((scalar, y));
        }
    }

    /// Add another multiexp into this one
    fn add_msm(&mut self, other: &Self) {
        for (x, (scalar, y)) in other.other.iter() {
            self.other
                .entry(*x)
                .and_modify(|(our_scalar, our_y)| {
                    if our_y == y {
                        *our_scalar += *scalar;
                    } else {
                        assert!(*our_y == -*y);
                        *our_scalar -= *scalar;
                    }
                })
                .or_insert((*scalar, *y));
        }

        if let Some(g_scalars) = &other.g_scalars {
            self.add_to_g_scalars(g_scalars);
        }

        if let Some(w_scalar) = &other.w_scalar {
            self.add_to_w_scalar(*w_scalar);
        }

        if let Some(u_scalar) = &other.u_scalar {
            self.add_to_u_scalar(*u_scalar);
        }
    }

    fn scale(&mut self, factor: C::Scalar) {
        if let Some(g_scalars) = &mut self.g_scalars {
            for g_scalar in g_scalars {
                *g_scalar *= &factor;
            }
        }

        for other in self.other.values_mut() {
            other.0 *= factor;
        }

        self.w_scalar = self.w_scalar.map(|a| a * &factor);
        self.u_scalar = self.u_scalar.map(|a| a * &factor);
    }

    fn check(&self) -> bool {
        bool::from(self.eval().is_identity())
    }

    fn eval(&self) -> C::Curve {
        let len = self.g_scalars.as_ref().map(|v| v.len()).unwrap_or(0)
            + self.w_scalar.map(|_| 1).unwrap_or(0)
            + self.u_scalar.map(|_| 1).unwrap_or(0)
            + self.other.len();
        let mut scalars: Vec<C::Scalar> = Vec::with_capacity(len);
        let mut bases: Vec<C> = Vec::with_capacity(len);

        scalars.extend(self.other.values().map(|(scalar, _)| scalar));
        bases.extend(
            self.other
                .iter()
                .map(|(x, (_, y))| C::from_xy(*x, *y).unwrap()),
        );

        if let Some(w_scalar) = self.w_scalar {
            scalars.push(w_scalar);
            bases.push(self.params.w);
        }

        if let Some(u_scalar) = self.u_scalar {
            scalars.push(u_scalar);
            bases.push(self.params.u);
        }

        if let Some(g_scalars) = &self.g_scalars {
            scalars.extend(g_scalars);
            bases.extend(self.params.g.iter());
        }

        assert_eq!(scalars.len(), len);

        best_multiexp(&scalars, &bases)
    }

    fn bases(&self) -> Vec<C::CurveExt> {
        self.other
            .iter()
            .map(|(x, (_, y))| C::from_xy(*x, *y).unwrap().into())
            .collect()
    }

    fn scalars(&self) -> Vec<C::Scalar> {
        self.other.values().map(|(scalar, _)| *scalar).collect()
    }
}

impl<'a, C: CurveAffine> MSMIPA<'a, C> {
    /// Add a value to the first entry of `g_scalars`.
    pub fn add_constant_term(&mut self, constant: C::Scalar) {
        if let Some(g_scalars) = self.g_scalars.as_mut() {
            g_scalars[0] += &constant;
        } else {
            let mut g_scalars = vec![C::Scalar::ZERO; self.params.n as usize];
            g_scalars[0] += &constant;
            self.g_scalars = Some(g_scalars);
        }
    }

    /// Add a vector of scalars to `g_scalars`. This function will panic if the
    /// caller provides a slice of scalars that is not of length `params.n`.
    pub fn add_to_g_scalars(&mut self, scalars: &[C::Scalar]) {
        assert_eq!(scalars.len(), self.params.n as usize);
        if let Some(g_scalars) = &mut self.g_scalars {
            for (g_scalar, scalar) in g_scalars.iter_mut().zip(scalars.iter()) {
                *g_scalar += scalar;
            }
        } else {
            self.g_scalars = Some(scalars.to_vec());
        }
    }
    /// Add to `w_scalar`
    pub fn add_to_w_scalar(&mut self, scalar: C::Scalar) {
        self.w_scalar = self.w_scalar.map_or(Some(scalar), |a| Some(a + &scalar));
    }

    /// Add to `u_scalar`
    pub fn add_to_u_scalar(&mut self, scalar: C::Scalar) {
        self.u_scalar = self.u_scalar.map_or(Some(scalar), |a| Some(a + &scalar));
    }
}

#[cfg(test)]
mod tests {
    use crate::poly::{
        commitment::{ParamsProver, MSM},
        ipa::{commitment::ParamsIPA, msm::MSMIPA},
    };
    use halo2curves::{
        pasta::{Ep, EpAffine, Fp, Fq},
        CurveAffine,
    };

    #[test]
    fn msm_arithmetic() {
        let base: Ep = EpAffine::from_xy(-Fp::one(), Fp::from(2)).unwrap().into();
        let base_viol = base + base;

        let params = ParamsIPA::new(4);
        let mut a: MSMIPA<EpAffine> = MSMIPA::new(&params);
        a.append_term(Fq::one(), base);
        // a = [1] P
        assert!(!a.clone().check());
        a.append_term(Fq::one(), base);
        // a = [1+1] P
        assert!(!a.clone().check());
        a.append_term(-Fq::one(), base_viol);
        // a = [1+1] P + [-1] 2P
        assert!(a.clone().check());
        let b = a.clone();

        // Append a point that is the negation of an existing one.
        a.append_term(Fq::from(4), -base);
        // a = [1+1-4] P + [-1] 2P
        assert!(!a.clone().check());
        a.append_term(Fq::from(2), base_viol);
        // a = [1+1-4] P + [-1+2] 2P
        assert!(a.clone().check());

        // Add two MSMs with common bases.
        a.scale(Fq::from(3));
        a.add_msm(&b);
        // a = [3*(1+1)+(1+1-4)] P + [3*(-1)+(-1+2)] 2P
        assert!(a.clone().check());

        let mut c: MSMIPA<EpAffine> = MSMIPA::new(&params);
        c.append_term(Fq::from(2), base);
        c.append_term(Fq::one(), -base_viol);
        // c = [2] P + [1] (-2P)
        assert!(c.clone().check());
        // Add two MSMs with bases that differ only in sign.
        a.add_msm(&c);
        assert!(a.check());
    }
}