1use std::{
2 cell::RefCell,
3 rc::Rc,
4 sync::{Arc, Mutex},
5};
6
7use openvm_algebra_circuit::Fp2;
8use openvm_circuit::{arch::VmChipWrapper, system::memory::OfflineMemory};
9use openvm_circuit_derive::InstructionExecutor;
10use openvm_circuit_primitives::var_range::{
11 SharedVariableRangeCheckerChip, VariableRangeCheckerBus,
12};
13use openvm_circuit_primitives_derive::{Chip, ChipUsageGetter};
14use openvm_mod_circuit_builder::{
15 ExprBuilder, ExprBuilderConfig, FieldExpr, FieldExpressionCoreChip,
16};
17use openvm_pairing_transpiler::PairingOpcode;
18use openvm_rv32_adapters::Rv32VecHeapAdapterChip;
19use openvm_stark_backend::p3_field::PrimeField32;
20
21#[derive(Chip, ChipUsageGetter, InstructionExecutor)]
24pub struct MillerDoubleStepChip<
25 F: PrimeField32,
26 const INPUT_BLOCKS: usize,
27 const OUTPUT_BLOCKS: usize,
28 const BLOCK_SIZE: usize,
29>(
30 VmChipWrapper<
31 F,
32 Rv32VecHeapAdapterChip<F, 1, INPUT_BLOCKS, OUTPUT_BLOCKS, BLOCK_SIZE, BLOCK_SIZE>,
33 FieldExpressionCoreChip,
34 >,
35);
36
37impl<
38 F: PrimeField32,
39 const INPUT_BLOCKS: usize,
40 const OUTPUT_BLOCKS: usize,
41 const BLOCK_SIZE: usize,
42 > MillerDoubleStepChip<F, INPUT_BLOCKS, OUTPUT_BLOCKS, BLOCK_SIZE>
43{
44 pub fn new(
45 adapter: Rv32VecHeapAdapterChip<F, 1, INPUT_BLOCKS, OUTPUT_BLOCKS, BLOCK_SIZE, BLOCK_SIZE>,
46 config: ExprBuilderConfig,
47 offset: usize,
48 range_checker: SharedVariableRangeCheckerChip,
49 offline_memory: Arc<Mutex<OfflineMemory<F>>>,
50 ) -> Self {
51 let expr = miller_double_step_expr(config, range_checker.bus());
52 let core = FieldExpressionCoreChip::new(
53 expr,
54 offset,
55 vec![PairingOpcode::MILLER_DOUBLE_STEP as usize],
56 vec![],
57 range_checker,
58 "MillerDoubleStep",
59 false,
60 );
61 Self(VmChipWrapper::new(adapter, core, offline_memory))
62 }
63}
64
65pub fn miller_double_step_expr(
67 config: ExprBuilderConfig,
68 range_bus: VariableRangeCheckerBus,
69) -> FieldExpr {
70 config.check_valid();
71 let builder = ExprBuilder::new(config, range_bus.range_max_bits);
72 let builder = Rc::new(RefCell::new(builder));
73
74 let mut x_s = Fp2::new(builder.clone());
75 let mut y_s = Fp2::new(builder.clone());
76
77 let mut three_x_square = x_s.square().int_mul([3, 0]);
78 let mut lambda = three_x_square.div(&mut y_s.int_mul([2, 0]));
79 let mut x_2s = lambda.square().sub(&mut x_s.int_mul([2, 0]));
80 let mut y_2s = lambda.mul(&mut (x_s.sub(&mut x_2s))).sub(&mut y_s);
81 x_2s.save_output();
82 y_2s.save_output();
83
84 let mut b = lambda.neg();
85 let mut c = lambda.mul(&mut x_s).sub(&mut y_s);
86 b.save_output();
87 c.save_output();
88
89 let builder = builder.borrow().clone();
90 FieldExpr::new(builder, range_bus, false)
91}
92
93#[cfg(test)]
94mod tests {
95 use openvm_circuit::arch::testing::{VmChipTestBuilder, BITWISE_OP_LOOKUP_BUS};
96 use openvm_circuit_primitives::bitwise_op_lookup::{
97 BitwiseOperationLookupBus, SharedBitwiseOperationLookupChip,
98 };
99 use openvm_ecc_guest::AffinePoint;
100 use openvm_instructions::{riscv::RV32_CELL_BITS, LocalOpcode};
101 use openvm_mod_circuit_builder::test_utils::{
102 biguint_to_limbs, bls12381_fq_to_biguint, bn254_fq_to_biguint,
103 };
104 use openvm_pairing_guest::{
105 bls12_381::{BLS12_381_LIMB_BITS, BLS12_381_MODULUS, BLS12_381_NUM_LIMBS},
106 bn254::{BN254_LIMB_BITS, BN254_MODULUS, BN254_NUM_LIMBS},
107 halo2curves_shims::{bls12_381::Bls12_381, bn254::Bn254},
108 pairing::MillerStep,
109 };
110 use openvm_pairing_transpiler::PairingOpcode;
111 use openvm_rv32_adapters::{rv32_write_heap_default, Rv32VecHeapAdapterChip};
112 use openvm_stark_backend::p3_field::FieldAlgebra;
113 use openvm_stark_sdk::p3_baby_bear::BabyBear;
114 use rand::{rngs::StdRng, SeedableRng};
115
116 use super::*;
117
118 type F = BabyBear;
119
120 #[test]
121 #[allow(non_snake_case)]
122 fn test_miller_double_bn254() {
123 use halo2curves_axiom::bn256::G2Affine;
124 const NUM_LIMBS: usize = 32;
125 const LIMB_BITS: usize = 8;
126 const BLOCK_SIZE: usize = 32;
127
128 let mut tester: VmChipTestBuilder<F> = VmChipTestBuilder::default();
129 let config = ExprBuilderConfig {
130 modulus: BN254_MODULUS.clone(),
131 limb_bits: BN254_LIMB_BITS,
132 num_limbs: BN254_NUM_LIMBS,
133 };
134 let bitwise_bus = BitwiseOperationLookupBus::new(BITWISE_OP_LOOKUP_BUS);
135 let bitwise_chip = SharedBitwiseOperationLookupChip::<RV32_CELL_BITS>::new(bitwise_bus);
136 let adapter = Rv32VecHeapAdapterChip::<F, 1, 4, 8, BLOCK_SIZE, BLOCK_SIZE>::new(
137 tester.execution_bus(),
138 tester.program_bus(),
139 tester.memory_bridge(),
140 tester.address_bits(),
141 bitwise_chip.clone(),
142 );
143 let mut chip = MillerDoubleStepChip::new(
144 adapter,
145 config,
146 PairingOpcode::CLASS_OFFSET,
147 tester.range_checker(),
148 tester.offline_memory_mutex_arc(),
149 );
150
151 let mut rng0 = StdRng::seed_from_u64(2);
152 let Q = G2Affine::random(&mut rng0);
153 let inputs = [Q.x.c0, Q.x.c1, Q.y.c0, Q.y.c1].map(bn254_fq_to_biguint);
154
155 let Q_ecpoint = AffinePoint { x: Q.x, y: Q.y };
156 let (Q_acc_init, l_init) = Bn254::miller_double_step(&Q_ecpoint);
157 let result = chip
158 .0
159 .core
160 .expr()
161 .execute_with_output(inputs.to_vec(), vec![]);
162 assert_eq!(result.len(), 8); assert_eq!(result[0], bn254_fq_to_biguint(Q_acc_init.x.c0));
164 assert_eq!(result[1], bn254_fq_to_biguint(Q_acc_init.x.c1));
165 assert_eq!(result[2], bn254_fq_to_biguint(Q_acc_init.y.c0));
166 assert_eq!(result[3], bn254_fq_to_biguint(Q_acc_init.y.c1));
167 assert_eq!(result[4], bn254_fq_to_biguint(l_init.b.c0));
168 assert_eq!(result[5], bn254_fq_to_biguint(l_init.b.c1));
169 assert_eq!(result[6], bn254_fq_to_biguint(l_init.c.c0));
170 assert_eq!(result[7], bn254_fq_to_biguint(l_init.c.c1));
171
172 let input_limbs = inputs
173 .map(|x| biguint_to_limbs::<NUM_LIMBS>(x, LIMB_BITS).map(BabyBear::from_canonical_u32));
174
175 let instruction = rv32_write_heap_default(
176 &mut tester,
177 input_limbs.to_vec(),
178 vec![],
179 chip.0.core.air.offset + PairingOpcode::MILLER_DOUBLE_STEP as usize,
180 );
181
182 tester.execute(&mut chip, &instruction);
183 let tester = tester.build().load(chip).load(bitwise_chip).finalize();
184 tester.simple_test().expect("Verification failed");
185 }
186
187 #[test]
188 #[allow(non_snake_case)]
189 fn test_miller_double_bls12_381() {
190 use halo2curves_axiom::bls12_381::G2Affine;
191 const NUM_LIMBS: usize = 48;
192 const LIMB_BITS: usize = 8;
193 const BLOCK_SIZE: usize = 16;
194
195 let mut tester: VmChipTestBuilder<F> = VmChipTestBuilder::default();
196 let config = ExprBuilderConfig {
197 modulus: BLS12_381_MODULUS.clone(),
198 limb_bits: BLS12_381_LIMB_BITS,
199 num_limbs: BLS12_381_NUM_LIMBS,
200 };
201 let bitwise_bus = BitwiseOperationLookupBus::new(BITWISE_OP_LOOKUP_BUS);
202 let bitwise_chip = SharedBitwiseOperationLookupChip::<RV32_CELL_BITS>::new(bitwise_bus);
203 let adapter = Rv32VecHeapAdapterChip::<F, 1, 12, 24, BLOCK_SIZE, BLOCK_SIZE>::new(
204 tester.execution_bus(),
205 tester.program_bus(),
206 tester.memory_bridge(),
207 tester.address_bits(),
208 bitwise_chip.clone(),
209 );
210 let mut chip = MillerDoubleStepChip::new(
211 adapter,
212 config,
213 PairingOpcode::CLASS_OFFSET,
214 tester.range_checker(),
215 tester.offline_memory_mutex_arc(),
216 );
217
218 let mut rng0 = StdRng::seed_from_u64(12);
219 let Q = G2Affine::random(&mut rng0);
220 let inputs = [Q.x.c0, Q.x.c1, Q.y.c0, Q.y.c1].map(bls12381_fq_to_biguint);
221
222 let Q_ecpoint = AffinePoint { x: Q.x, y: Q.y };
223 let (Q_acc_init, l_init) = Bls12_381::miller_double_step(&Q_ecpoint);
224 let result = chip
225 .0
226 .core
227 .expr()
228 .execute_with_output(inputs.to_vec(), vec![]);
229 assert_eq!(result.len(), 8); assert_eq!(result[0], bls12381_fq_to_biguint(Q_acc_init.x.c0));
231 assert_eq!(result[1], bls12381_fq_to_biguint(Q_acc_init.x.c1));
232 assert_eq!(result[2], bls12381_fq_to_biguint(Q_acc_init.y.c0));
233 assert_eq!(result[3], bls12381_fq_to_biguint(Q_acc_init.y.c1));
234 assert_eq!(result[4], bls12381_fq_to_biguint(l_init.b.c0));
235 assert_eq!(result[5], bls12381_fq_to_biguint(l_init.b.c1));
236 assert_eq!(result[6], bls12381_fq_to_biguint(l_init.c.c0));
237 assert_eq!(result[7], bls12381_fq_to_biguint(l_init.c.c1));
238
239 let input_limbs = inputs
240 .map(|x| biguint_to_limbs::<NUM_LIMBS>(x, LIMB_BITS).map(BabyBear::from_canonical_u32));
241
242 let instruction = rv32_write_heap_default(
243 &mut tester,
244 input_limbs.to_vec(),
245 vec![],
246 chip.0.core.air.offset + PairingOpcode::MILLER_DOUBLE_STEP as usize,
247 );
248
249 tester.execute(&mut chip, &instruction);
250 let tester = tester.build().load(chip).load(bitwise_chip).finalize();
251 tester.simple_test().expect("Verification failed");
252 }
253}