openvm_algebra_guest/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
#![no_std]
extern crate self as openvm_algebra_guest;
/// This is custom-1 defined in RISC-V spec document
pub const OPCODE: u8 = 0x2b;
pub const MODULAR_ARITHMETIC_FUNCT3: u8 = 0b000;
pub const COMPLEX_EXT_FIELD_FUNCT3: u8 = 0b010;
/// Modular arithmetic is configurable.
/// The funct7 field equals `mod_idx * MODULAR_ARITHMETIC_MAX_KINDS + base_funct7`.
#[derive(Debug, Copy, Clone, PartialEq, Eq, FromRepr)]
#[repr(u8)]
pub enum ModArithBaseFunct7 {
AddMod = 0,
SubMod,
MulMod,
DivMod,
IsEqMod,
SetupMod,
}
impl ModArithBaseFunct7 {
pub const MODULAR_ARITHMETIC_MAX_KINDS: u8 = 8;
}
/// Complex extension field is configurable.
/// The funct7 field equals `fp2_idx * COMPLEX_EXT_FIELD_MAX_KINDS + base_funct7`.
#[derive(Debug, Copy, Clone, PartialEq, Eq, FromRepr)]
#[repr(u8)]
pub enum ComplexExtFieldBaseFunct7 {
Add = 0,
Sub,
Mul,
Div,
Setup,
}
impl ComplexExtFieldBaseFunct7 {
pub const COMPLEX_EXT_FIELD_MAX_KINDS: u8 = 8;
}
/// Modular arithmetic traits for use with OpenVM intrinsics.
extern crate alloc;
use alloc::vec::Vec;
use core::{
fmt::Debug,
iter::{Product, Sum},
ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign},
};
pub use field::Field;
#[cfg(not(target_os = "zkvm"))]
use num_bigint_dig::BigUint;
pub use openvm_algebra_moduli_setup as moduli_setup;
pub use serde_big_array::BigArray;
use strum_macros::FromRepr;
/// Field traits
pub mod field;
/// Implementation of this library's traits on halo2curves types.
/// Used for testing and also VM runtime execution.
/// These should **only** be importable on a host machine.
#[cfg(all(not(target_os = "zkvm"), feature = "halo2curves"))]
mod halo2curves;
/// Exponentiation by bytes
mod exp_bytes;
pub use exp_bytes::*;
/// Division operation that is undefined behavior when the denominator is not invertible.
pub trait DivUnsafe<Rhs = Self>: Sized {
/// Output type of `div_unsafe`.
type Output;
/// Undefined behavior when denominator is not invertible.
fn div_unsafe(self, other: Rhs) -> Self::Output;
}
/// Division assignment operation that is undefined behavior when the denominator is not invertible.
pub trait DivAssignUnsafe<Rhs = Self>: Sized {
/// Undefined behavior when denominator is not invertible.
fn div_assign_unsafe(&mut self, other: Rhs);
}
/// Trait definition for OpenVM modular integers, where each operation
/// is done modulo MODULUS.
///
/// Division is only defined over the group of units in the ring of integers modulo MODULUS.
/// It is undefined behavior outside of this group.
pub trait IntMod:
Sized
+ Eq
+ Clone
+ Debug
+ Neg<Output = Self>
+ Add<Output = Self>
+ Sub<Output = Self>
+ Mul<Output = Self>
+ DivUnsafe<Output = Self>
+ Sum
+ Product
+ for<'a> Add<&'a Self, Output = Self>
+ for<'a> Sub<&'a Self, Output = Self>
+ for<'a> Mul<&'a Self, Output = Self>
+ for<'a> DivUnsafe<&'a Self, Output = Self>
+ for<'a> Sum<&'a Self>
+ for<'a> Product<&'a Self>
+ AddAssign
+ SubAssign
+ MulAssign
+ DivAssignUnsafe
+ for<'a> AddAssign<&'a Self>
+ for<'a> SubAssign<&'a Self>
+ for<'a> MulAssign<&'a Self>
+ for<'a> DivAssignUnsafe<&'a Self>
{
/// Underlying representation of IntMod. Usually of the form `[u8; NUM_LIMBS]`.
type Repr: AsRef<[u8]> + AsMut<[u8]>;
/// `SelfRef<'a>` should almost always be `&'a Self`. This is a way to include implementations of binary operations where both sides are `&'a Self`.
type SelfRef<'a>: Add<&'a Self, Output = Self>
+ Sub<&'a Self, Output = Self>
+ Neg<Output = Self>
+ Mul<&'a Self, Output = Self>
+ DivUnsafe<&'a Self, Output = Self>
where
Self: 'a;
/// Modulus as a Repr.
const MODULUS: Self::Repr;
/// Number of limbs used to internally represent an element of `Self`.
const NUM_LIMBS: usize;
/// The zero element (i.e. the additive identity).
const ZERO: Self;
/// The one element (i.e. the multiplicative identity).
const ONE: Self;
/// Creates a new IntMod from an instance of Repr.
fn from_repr(repr: Self::Repr) -> Self;
/// Creates a new IntMod from an array of bytes, little endian.
fn from_le_bytes(bytes: &[u8]) -> Self;
/// Creates a new IntMod from an array of bytes, big endian.
fn from_be_bytes(bytes: &[u8]) -> Self;
/// Creates a new IntMod from a u8.
fn from_u8(val: u8) -> Self;
/// Creates a new IntMod from a u32.
fn from_u32(val: u32) -> Self;
/// Creates a new IntMod from a u64.
fn from_u64(val: u64) -> Self;
/// Value of this IntMod as an array of bytes, little endian.
fn as_le_bytes(&self) -> &[u8];
/// Value of this IntMod as an array of bytes, big endian.
fn to_be_bytes(&self) -> Self::Repr;
/// Modulus N as a BigUint.
#[cfg(not(target_os = "zkvm"))]
fn modulus_biguint() -> BigUint;
/// Creates a new IntMod from a BigUint.
#[cfg(not(target_os = "zkvm"))]
fn from_biguint(biguint: BigUint) -> Self;
/// Value of this IntMod as a BigUint.
#[cfg(not(target_os = "zkvm"))]
fn as_biguint(&self) -> BigUint;
fn neg_assign(&mut self);
/// Doubles `self` in-place.
fn double_assign(&mut self);
/// Doubles this IntMod.
fn double(&self) -> Self {
let mut ret = self.clone();
ret += self;
ret
}
/// Squares `self` in-place.
fn square_assign(&mut self);
/// Squares this IntMod.
fn square(&self) -> Self {
let mut ret = self.clone();
ret *= self;
ret
}
/// Cubes this IntMod.
fn cube(&self) -> Self {
let mut ret = self.square();
ret *= self;
ret
}
/// zkVM specific concept: the in-memory values of `Self` will normally
/// be in their canonical unique form (e.g., less than modulus) but the
/// zkVM circuit does not constrain it. In cases where uniqueness is
/// essential for security, this function should be called to constrain
/// uniqueness.
///
/// Note that this is done automatically in [PartialEq] and [Eq] implementations.
///
/// ## Panics
/// If assertion fails.
fn assert_unique(&self) {
// This must not be optimized out
let _ = core::hint::black_box(PartialEq::eq(self, self));
}
/// This function is mostly for internal use in other internal implemntations.
/// Normal users are not advised to use it.
///
/// If `self` was directly constructed from a raw representation
/// and not in its canonical unique form (e.g., less than the modulus),
/// this function will "reduce" `self` to its canonical form and also
/// call `assert_unique`.
fn reduce(&mut self) {
self.add_assign(&Self::ZERO);
self.assert_unique();
}
}
// Ref: https://docs.rs/elliptic-curve/latest/elliptic_curve/ops/trait.Reduce.html
pub trait Reduce: Sized {
/// Interpret the given bytes as an integer and perform a modular reduction.
fn reduce_le_bytes(bytes: &[u8]) -> Self;
fn reduce_be_bytes(bytes: &[u8]) -> Self {
Self::reduce_le_bytes(&bytes.iter().rev().copied().collect::<Vec<_>>())
}
}