goblin/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
//! # libgoblin
//!
//! ![say the right
//! words](https://s-media-cache-ak0.pinimg.com/736x/1b/6a/aa/1b6aaa2bae005e2fed84b1a7c32ecb1b.jpg)
//!
//! `libgoblin` is a cross-platform trifecta of binary parsing and loading fun. It supports:
//!
//! * An ELF32/64 parser, and raw C structs
//! * A 32/64-bit, zero-copy, endian aware, Mach-o parser, and raw C structs
//! * A PE32/PE32+ (64-bit) parser, and raw C structs
//! * A Unix archive parser and loader
//!
//! Goblin requires at least `rustc` 1.36.0, uses the 2018 rust edition, and is developed on stable.
//!
//! Goblin primarily supports the following important use cases:
//!
//! 1. Core, std-free `#[repr(C)]` structs, tiny compile time, 32/64 (or both) at your leisure
//!
//! 2. Type punning. Define a function once on a type, but have it work on 32 or 64-bit variants - without really changing anything, and no macros! See `examples/automagic.rs` for a basic example.
//!
//! 3. `std` mode. This throws in read and write impls via `Pread` and `Pwrite`, reading from file, convenience allocations, extra methods, etc. This is for clients who can allocate and want to read binaries off disk.
//!
//! 4. `Endian_fd`. A truly terrible name :laughing: this is for binary analysis like in [panopticon](https://github.com/das-labor/panopticon) which needs to read binaries of foreign endianness, _or_ as a basis for constructing cross platform foreign architecture binutils, e.g. [cargo-sym](https://github.com/m4b/cargo-sym) and [bingrep](https://github.com/m4b/bingrep) are simple examples of this, but the sky is the limit.
//!
//! # Example
//!
//! ```rust
//! use goblin::{error, Object};
//! use std::path::Path;
//! use std::env;
//! use std::fs;
//!
//! fn run () -> error::Result<()> {
//! for (i, arg) in env::args().enumerate() {
//! if i == 1 {
//! let path = Path::new(arg.as_str());
//! let buffer = fs::read(path)?;
//! match Object::parse(&buffer)? {
//! Object::Elf(elf) => {
//! println!("elf: {:#?}", &elf);
//! },
//! Object::PE(pe) => {
//! println!("pe: {:#?}", &pe);
//! },
//! Object::COFF(coff) => {
//! println!("coff: {:#?}", &coff);
//! },
//! Object::Mach(mach) => {
//! println!("mach: {:#?}", &mach);
//! },
//! Object::Archive(archive) => {
//! println!("archive: {:#?}", &archive);
//! },
//! Object::Unknown(magic) => { println!("unknown magic: {:#x}", magic) },
//! _ => { }
//! }
//! }
//! }
//! Ok(())
//! }
//! ```
//!
//! # Feature Usage
//!
//! `libgoblin` is engineered to be tailored towards very different use-case scenarios, for example:
//!
//! * a no-std mode; just simply set default features to false
//! * a endian aware parsing and reading
//! * for binary loaders which don't require this, simply use `elf32` and `elf64` (and `std` of course)
//!
//! For example, if you are writing a 64-bit kernel, or just want a barebones C-like
//! header interface which defines the structures, just select `elf64`, `--cfg
//! feature=\"elf64\"`, which will compile without `std`.
//!
//! Similarly, if you want to use host endianness loading via the various `from_fd` methods, `--cfg
//! feature=\"std\"`, which will not use the `byteorder` extern crate, and read the bytes
//! from disk in the endianness of the host machine.
//!
//! If you want endian aware reading, and you don't use `default`, then you need to opt in as normal
//! via `endian_fd`
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(feature = "std")]
extern crate core;
#[cfg(feature = "alloc")]
#[macro_use]
extern crate alloc;
/////////////////////////
// Misc/Helper Modules
/////////////////////////
#[allow(unused)]
macro_rules! if_std {
($($i:item)*) => ($(
#[cfg(feature = "std")]
$i
)*)
}
#[allow(unused)]
macro_rules! if_alloc {
($($i:item)*) => ($(
#[cfg(feature = "alloc")]
$i
)*)
}
#[cfg(feature = "alloc")]
pub mod error;
pub mod strtab;
/// Binary container size information and byte-order context
pub mod container {
pub use scroll::Endian;
#[derive(Debug, Copy, Clone, PartialEq)]
/// The size of a binary container
pub enum Container {
Little,
Big,
}
impl Container {
/// Is this a 64-bit container or not?
pub fn is_big(self) -> bool {
self == Container::Big
}
}
#[cfg(not(target_pointer_width = "64"))]
/// The default binary container size - either `Big` or `Little`, depending on whether the host machine's pointer size is 64 or not
pub const CONTAINER: Container = Container::Little;
#[cfg(target_pointer_width = "64")]
/// The default binary container size - either `Big` or `Little`, depending on whether the host machine's pointer size is 64 or not
pub const CONTAINER: Container = Container::Big;
impl Default for Container {
#[inline]
fn default() -> Self {
CONTAINER
}
}
#[derive(Debug, Copy, Clone, PartialEq)]
/// A binary parsing context, including the container size and underlying byte endianness
pub struct Ctx {
pub container: Container,
pub le: scroll::Endian,
}
impl Ctx {
/// Whether this binary container context is "big" or not
pub fn is_big(self) -> bool {
self.container.is_big()
}
/// Whether this binary container context is little endian or not
pub fn is_little_endian(self) -> bool {
self.le.is_little()
}
/// Create a new binary container context
pub fn new(container: Container, le: scroll::Endian) -> Self {
Ctx { container, le }
}
/// Return a dubious pointer/address byte size for the container
pub fn size(self) -> usize {
match self.container {
// TODO: require pointer size initialization/setting or default to container size with these values, e.g., avr pointer width will be smaller iirc
Container::Little => 4,
Container::Big => 8,
}
}
}
impl From<Container> for Ctx {
fn from(container: Container) -> Self {
Ctx {
container,
le: scroll::Endian::default(),
}
}
}
impl From<scroll::Endian> for Ctx {
fn from(le: scroll::Endian) -> Self {
Ctx {
container: CONTAINER,
le,
}
}
}
impl Default for Ctx {
#[inline]
fn default() -> Self {
Ctx {
container: Container::default(),
le: scroll::Endian::default(),
}
}
}
}
/// Takes a reference to the first 16 bytes of the total bytes slice and convert it to an array for `peek_bytes` to use.
/// Returns None if bytes's length is less than 16.
#[allow(unused)]
fn take_hint_bytes(bytes: &[u8]) -> Option<&[u8; 16]> {
bytes
.get(0..16)
.and_then(|hint_bytes_slice| hint_bytes_slice.try_into().ok())
}
#[derive(Debug, Default)]
/// Information obtained from a peek `Hint`
pub struct HintData {
pub is_lsb: bool,
pub is_64: Option<bool>,
}
#[derive(Debug)]
#[non_exhaustive]
/// A hint at the underlying binary format for 16 bytes of arbitrary data
pub enum Hint {
Elf(HintData),
Mach(HintData),
MachFat(usize),
PE,
COFF,
Archive,
Unknown(u64),
}
macro_rules! if_everything {
($($i:item)*) => ($(
#[cfg(all(feature = "endian_fd", feature = "elf64", feature = "elf32", feature = "pe64", feature = "pe32", feature = "mach64", feature = "mach32", feature = "archive"))]
$i
)*)
}
if_everything! {
/// Peeks at `bytes`, and returns a `Hint`
pub fn peek_bytes(bytes: &[u8; 16]) -> error::Result<Hint> {
use scroll::{Pread, LE};
if &bytes[0..elf::header::SELFMAG] == elf::header::ELFMAG {
let class = bytes[elf::header::EI_CLASS];
let is_lsb = bytes[elf::header::EI_DATA] == elf::header::ELFDATA2LSB;
let is_64 =
if class == elf::header::ELFCLASS64 {
Some (true)
} else if class == elf::header::ELFCLASS32 {
Some (false)
} else { None };
Ok(Hint::Elf(HintData { is_lsb, is_64 }))
} else if &bytes[0..archive::SIZEOF_MAGIC] == archive::MAGIC {
Ok(Hint::Archive)
} else {
match *&bytes[0..2].pread_with::<u16>(0, LE)? {
pe::header::DOS_MAGIC => Ok(Hint::PE),
pe::header::COFF_MACHINE_X86 |
pe::header::COFF_MACHINE_X86_64 |
pe::header::COFF_MACHINE_ARM64 => Ok(Hint::COFF),
_ => mach::peek_bytes(bytes)
}
}
}
/// Peeks at the underlying Read object. Requires the underlying bytes to have at least 16 byte length. Resets the seek to `Start` after reading.
#[cfg(feature = "std")]
pub fn peek<R: ::std::io::Read + ::std::io::Seek>(fd: &mut R) -> error::Result<Hint> {
use std::io::SeekFrom;
let mut bytes = [0u8; 16];
fd.seek(SeekFrom::Start(0))?;
fd.read_exact(&mut bytes)?;
fd.seek(SeekFrom::Start(0))?;
peek_bytes(&bytes)
}
#[derive(Debug)]
#[allow(clippy::large_enum_variant)]
#[non_exhaustive]
/// A parseable object that goblin understands
pub enum Object<'a> {
/// An ELF32/ELF64!
Elf(elf::Elf<'a>),
/// A PE32/PE32+!
PE(pe::PE<'a>),
/// A COFF
COFF(pe::Coff<'a>),
/// A 32/64-bit Mach-o binary _OR_ it is a multi-architecture binary container!
Mach(mach::Mach<'a>),
/// A Unix archive
Archive(archive::Archive<'a>),
/// None of the above, with the given magic value
Unknown(u64),
}
impl<'a> Object<'a> {
/// Tries to parse an `Object` from `bytes`
pub fn parse(bytes: &[u8]) -> error::Result<Object> {
if let Some(hint_bytes) = take_hint_bytes(bytes) {
match peek_bytes(hint_bytes)? {
Hint::Elf(_) => Ok(Object::Elf(elf::Elf::parse(bytes)?)),
Hint::Mach(_) | Hint::MachFat(_) => Ok(Object::Mach(mach::Mach::parse(bytes)?)),
Hint::Archive => Ok(Object::Archive(archive::Archive::parse(bytes)?)),
Hint::PE => Ok(Object::PE(pe::PE::parse(bytes)?)),
Hint::COFF => Ok(Object::COFF(pe::Coff::parse(bytes)?)),
Hint::Unknown(magic) => Ok(Object::Unknown(magic)),
}
} else {
Err(error::Error::Malformed(format!("Object is too small.")))
}
}
}
} // end if_endian_fd
/////////////////////////
// Binary Modules
/////////////////////////
#[cfg(any(feature = "elf64", feature = "elf32"))]
#[macro_use]
pub mod elf;
#[cfg(feature = "elf32")]
/// The ELF 32-bit struct definitions and associated values, re-exported for easy "type-punning"
pub mod elf32 {
pub use crate::elf::dynamic::dyn32 as dynamic;
pub use crate::elf::header::header32 as header;
pub use crate::elf::note::Nhdr32 as Note;
pub use crate::elf::program_header::program_header32 as program_header;
pub use crate::elf::reloc::reloc32 as reloc;
pub use crate::elf::section_header::section_header32 as section_header;
pub use crate::elf::sym::sym32 as sym;
pub mod gnu_hash {
pub use crate::elf::gnu_hash::hash;
elf_gnu_hash_impl!(u32);
}
}
#[cfg(feature = "elf64")]
/// The ELF 64-bit struct definitions and associated values, re-exported for easy "type-punning"
pub mod elf64 {
pub use crate::elf::dynamic::dyn64 as dynamic;
pub use crate::elf::header::header64 as header;
pub use crate::elf::note::Nhdr64 as Note;
pub use crate::elf::program_header::program_header64 as program_header;
pub use crate::elf::reloc::reloc64 as reloc;
pub use crate::elf::section_header::section_header64 as section_header;
pub use crate::elf::sym::sym64 as sym;
pub mod gnu_hash {
pub use crate::elf::gnu_hash::hash;
elf_gnu_hash_impl!(u64);
}
}
#[cfg(any(feature = "mach32", feature = "mach64"))]
pub mod mach;
#[cfg(any(feature = "pe32", feature = "pe64"))]
pub mod pe;
#[cfg(feature = "archive")]
pub mod archive;
#[cfg(test)]
mod tests {
use super::*;
if_everything! {
#[test]
fn take_hint_bytes_long_enough() {
let bytes_array = [1; 32];
let bytes = &bytes_array[..];
assert!(take_hint_bytes(bytes).is_some())
}
#[test]
fn take_hint_bytes_not_long_enough() {
let bytes_array = [1; 8];
let bytes = &bytes_array[..];
assert!(take_hint_bytes(bytes).is_none())
}
}
}