capstone/arch/
x86.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
//! Contains x86-specific types

use core::convert::From;
use core::convert::TryInto;
use core::{cmp, fmt, slice};

use capstone_sys::{
    cs_ac_type, cs_x86, cs_x86_op, cs_x86_op__bindgen_ty_1, x86_op_mem, x86_op_type,
};
pub use capstone_sys::x86_insn_group as X86InsnGroup;
pub use capstone_sys::x86_insn as X86Insn;
pub use capstone_sys::x86_reg as X86Reg;
pub use capstone_sys::x86_prefix as X86Prefix;
pub use capstone_sys::x86_avx_bcast as X86AvxBcast;
pub use capstone_sys::x86_sse_cc as X86SseCC;
pub use capstone_sys::x86_avx_cc as X86AvxCC;
pub use capstone_sys::x86_xop_cc as X86XopCC;
pub use capstone_sys::x86_avx_rm as X86AvxRm;

pub use crate::arch::arch_builder::x86::*;
use crate::arch::DetailsArchInsn;
use crate::instruction::{RegAccessType, RegId, RegIdInt};

/// Contains X86-specific details for an instruction
pub struct X86InsnDetail<'a>(pub(crate) &'a cs_x86);

// todo(tmfink): expose new types cs_x86__bindgen_ty_1, cs_x86_encoding, x86_xop_cc,
// cs_x86_op::access

impl X86OperandType {
    fn new(op_type: x86_op_type, value: cs_x86_op__bindgen_ty_1) -> X86OperandType {
        use self::x86_op_type::*;
        use self::X86OperandType::*;

        match op_type {
            X86_OP_REG => Reg(RegId(unsafe { value.reg } as RegIdInt)),
            X86_OP_IMM => Imm(unsafe { value.imm }),
            X86_OP_MEM => Mem(X86OpMem(unsafe { value.mem })),
            X86_OP_INVALID => Invalid,
        }
    }
}

/// X86 operand
#[derive(Clone, Debug, PartialEq)]
pub struct X86Operand {
    /// Operand size
    pub size: u8,

    /// How is this operand accessed? NOTE: this field is irrelevant if engine
    /// is compiled in DIET mode.
    pub access: Option<RegAccessType>,

    /// AVX broadcast
    pub avx_bcast: X86AvxBcast,

    /// AVX zero opmask
    pub avx_zero_opmask: bool,

    /// Operand type
    pub op_type: X86OperandType,
}

/// X86 operand
#[derive(Clone, Debug, PartialEq)]
pub enum X86OperandType {
    /// Register
    Reg(RegId),

    /// Immediate
    Imm(i64),

    /// Memory
    Mem(X86OpMem),

    /// Invalid
    Invalid,
}

/// X86 memory operand
#[derive(Debug, Copy, Clone)]
pub struct X86OpMem(pub(crate) x86_op_mem);

impl<'a> X86InsnDetail<'a> {
    /// Instruction prefix, which can be up to 4 bytes.
    /// A prefix byte gets value 0 when irrelevant.
    /// See `X86Prefix` for details.
    ///
    /// prefix[0] indicates REP/REPNE/LOCK prefix (See `X86_PREFIX_REP`/`REPNE`/`LOCK`)
    ///
    /// prefix[1] indicates segment override (irrelevant for x86_64):
    /// See `X86_PREFIX_CS`/`SS`/`DS`/`ES`/`FS`/`GS`.
    ///
    /// prefix[2] indicates operand-size override (`X86_PREFIX_OPSIZE`)
    ///
    /// prefix[3] indicates address-size override (`X86_PREFIX_ADDRSIZE`)
    pub fn prefix(&self) -> &[u8; 4] {
        &self.0.prefix
    }

    /// Instruction opcode, which can be from 1 to 4 bytes in size.
    /// This contains VEX opcode as well.
    /// A trailing opcode byte gets value 0 when irrelevant.
    pub fn opcode(&self) -> &[u8; 4] {
        &self.0.opcode
    }

    /// REX prefix: only a non-zero value is relevant for x86_64
    pub fn rex(&self) -> u8 {
        self.0.rex
    }

    /// Address size
    pub fn addr_size(&self) -> u8 {
        self.0.addr_size
    }

    /// ModR/M byte
    pub fn modrm(&self) -> u8 {
        self.0.modrm
    }

    /// SIB (Scaled Index Byte) value, or 0 when irrelevant
    pub fn sib(&self) -> u8 {
        self.0.sib
    }

    /// Displacement value, valid if encoding.disp_offset != 0
    pub fn disp(&self) -> i64 {
        self.0.disp
    }

    /// Scaled Index Byte (SIB) index, or X86_REG_INVALID when irrelevant
    pub fn sib_index(&self) -> RegId {
        RegId(self.0.sib_index as RegIdInt)
    }

    /// Scaled Index Byte (SIB) scale, or X86_REG_INVALID when irrelevant
    pub fn sib_scale(&self) -> i8 {
        self.0.sib_scale
    }

    /// Scaled Index Byte (SIB) base register, or X86_REG_INVALID when irrelevant
    pub fn sib_base(&self) -> RegId {
        RegId(self.0.sib_base as RegIdInt)
    }

    /// eXtended Operations (XOP) Code Condition
    pub fn xop_cc(&self) -> X86XopCC {
        self.0.xop_cc
    }

    /// Streaming SIMD Extensions (SSE) condition  codes
    pub fn sse_cc(&self) -> X86SseCC {
        self.0.sse_cc
    }

    /// Advanced Vector Extensions (AVX) condition  codes
    pub fn avx_cc(&self) -> X86AvxCC {
        self.0.avx_cc
    }

    /// Advanced Vector Extensions (AVX) sae
    pub fn avx_sae(&self) -> bool {
        self.0.avx_sae
    }

    /// Advanced Vector Extensions (AVX) rm
    pub fn avx_rm(&self) -> X86AvxRm {
        self.0.avx_rm
    }
}

impl_PartialEq_repr_fields!(X86InsnDetail<'a> [ 'a ];
    prefix, opcode, rex, addr_size, modrm, sib, disp, sib_index, sib_scale, sib_base, sse_cc,
    avx_cc, avx_sae, avx_rm, operands
);

impl X86OpMem {
    /// Segment
    pub fn segment(&self) -> RegId {
        RegId(self.0.segment as RegIdInt)
    }

    /// Base register
    pub fn base(&self) -> RegId {
        RegId(self.0.base as RegIdInt)
    }

    /// Index register
    pub fn index(&self) -> RegId {
        RegId(self.0.index as RegIdInt)
    }

    /// Scale
    pub fn scale(&self) -> i32 {
        self.0.scale as i32
    }

    /// Display
    pub fn disp(&self) -> i64 {
        self.0.disp
    }
}

impl_PartialEq_repr_fields!(X86OpMem;
    segment, base, index, scale, disp
);

impl cmp::Eq for X86OpMem {}

impl Default for X86Operand {
    fn default() -> Self {
        X86Operand {
            size: 0,
            access: None,
            avx_bcast: X86AvxBcast::X86_AVX_BCAST_INVALID,
            avx_zero_opmask: false,
            op_type: X86OperandType::Invalid,
        }
    }
}

impl<'a> From<&'a cs_x86_op> for X86Operand {
    fn from(op: &cs_x86_op) -> X86Operand {
        let op_type = X86OperandType::new(op.type_, op.__bindgen_anon_1);
        X86Operand {
            size: op.size,
            access: cs_ac_type(op.access as _).try_into().ok(),
            avx_bcast: op.avx_bcast,
            avx_zero_opmask: op.avx_zero_opmask,
            op_type,
        }
    }
}

def_arch_details_struct!(
    InsnDetail = X86InsnDetail;
    Operand = X86Operand;
    OperandIterator = X86OperandIterator;
    OperandIteratorLife = X86OperandIterator<'a>;
    [ pub struct X86OperandIterator<'a>(slice::Iter<'a, cs_x86_op>); ]
    cs_arch_op = cs_x86_op;
    cs_arch = cs_x86;
);

#[cfg(test)]
mod test {
    use super::*;
    use capstone_sys::*;

    #[test]
    fn test_x86_op_type() {
        use super::x86_op_type::*;
        use super::X86OperandType::*;

        fn t(
            op_type_value: (x86_op_type, cs_x86_op__bindgen_ty_1),
            expected_op_type: X86OperandType,
        ) {
            let (op_type, op_value) = op_type_value;
            let op_type = X86OperandType::new(op_type, op_value);
            assert_eq!(expected_op_type, op_type);
        }

        t(
            (X86_OP_INVALID, cs_x86_op__bindgen_ty_1 { reg: 0 }),
            Invalid,
        );
        t(
            (X86_OP_REG, cs_x86_op__bindgen_ty_1 { reg: 0 }),
            Reg(RegId(0)),
        );
    }

    #[test]
    fn test_x86_op_eq() {
        let a1 = X86Operand {
            op_type: X86OperandType::Imm(0),
            ..Default::default()
        };
        let a2 = X86Operand {
            op_type: X86OperandType::Imm(-100),
            ..Default::default()
        };

        assert_eq!(a1, a1.clone());
        assert_ne!(a1, a2.clone());
    }

    #[test]
    fn test_x86_insn_eq() {
        fn t_eq(a: &cs_x86, b: &cs_x86) {
            assert_eq!(X86InsnDetail(a), X86InsnDetail(b))
        }
        fn t_ne(a: &cs_x86, b: &cs_x86) {
            assert_ne!(X86InsnDetail(a), X86InsnDetail(b))
        }

        let a1 = cs_x86 {
            prefix: [0, 0, 0, 0],
            opcode: [0, 0, 0, 0],
            rex: 0,
            addr_size: 0,
            modrm: 0,
            sib: 0,
            disp: 0,
            sib_index: x86_reg::X86_REG_INVALID,
            sib_scale: 0,
            sib_base: x86_reg::X86_REG_INVALID,
            sse_cc: x86_sse_cc::X86_SSE_CC_INVALID,
            avx_cc: x86_avx_cc::X86_AVX_CC_INVALID,
            avx_sae: false,
            avx_rm: x86_avx_rm::X86_AVX_RM_INVALID,
            op_count: 0,
            __bindgen_anon_1: cs_x86__bindgen_ty_1 {
                eflags: 0,
            },
            encoding: cs_x86_encoding {
                modrm_offset: 0,
                disp_offset: 0,
                disp_size: 0,
                imm_offset: 0,
                imm_size: 0,
            },
            xop_cc: x86_xop_cc::X86_XOP_CC_INVALID,
            operands: [ cs_x86_op {
                type_: x86_op_type::X86_OP_INVALID,
                __bindgen_anon_1: cs_x86_op__bindgen_ty_1 { reg: x86_reg::X86_REG_INVALID },
                size: 0,
                avx_bcast: x86_avx_bcast::X86_AVX_BCAST_INVALID,
                avx_zero_opmask: false,
                access: 0,
            }
            ; 8],

        };
        let mut a2 = a1.clone();
        a2.operands[1].type_ = x86_op_type::X86_OP_REG;
        let a1_clone = cs_x86 {
            ..a1
        };
        let a3 = cs_x86 {
            rex: 1,
            ..a1
        };
        let op_count_differ = cs_x86 {
            op_count: 1,
            ..a1
        };
        let mut op1_differ = op_count_differ.clone();
        op1_differ.operands[0].avx_bcast = x86_avx_bcast::X86_AVX_BCAST_2;

        t_eq(&a1, &a1);
        t_eq(&a1, &a2);
        t_eq(&a1, &a1_clone);
        t_ne(&a1, &a3);
        t_ne(&a1, &op_count_differ);
        t_ne(&op_count_differ, &op1_differ);
    }
}