encode_unicode/traits.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/* Copyright 2016-2022 Torbjørn Birch Moltu
* Copyright 2018 Aljoscha Meyer
*
* Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
* http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
* http://opensource.org/licenses/MIT>, at your option. This file may not be
* copied, modified, or distributed except according to those terms.
*/
use crate::utf8_char::Utf8Char;
use crate::utf16_char::Utf16Char;
use crate::utf8_iterators::*;
use crate::utf16_iterators::*;
use crate::decoding_iterators::*;
use crate::error::*;
use crate::error::Utf8ErrorKind::*;
extern crate core;
use core::{char, u32};
use core::ops::{Not, Index, RangeFull};
use core::borrow::Borrow;
#[cfg(feature="ascii")]
extern crate ascii;
#[cfg(feature="ascii")]
use ascii::AsciiStr;
// TODO better docs and tests
/// Methods for working with `u8`s as UTF-8 bytes.
pub trait U8UtfExt {
/// How many more bytes will you need to complete this codepoint?
///
/// # Errors
///
/// An error is returned if the byte is not a valid start of an UTF-8
/// codepoint:
///
/// * `128..192`: [`UnexpectedContinuationByte`](error/enum.Utf8ErrorKind.html#variant.UnexpectedContinuationByte)
/// * `245..`, `192` and `193`: [`NonUtf8Byte`](error/enum.Utf8ErrorKind.html#variant.NonUtf8Byte)
fn extra_utf8_bytes(self) -> Result<usize,Utf8Error>;
/// How many more bytes will you need to complete this codepoint?
///
/// This function assumes that the byte is a valid UTF-8 start, and might
/// return any value otherwise. (but the function is safe to call with any
/// value and will return a consistent result).
fn extra_utf8_bytes_unchecked(self) -> usize;
}
impl U8UtfExt for u8 {
#[inline]
fn extra_utf8_bytes(self) -> Result<usize,Utf8Error> {
match self {
0x00..=0x7f => Ok(0),
0xc2..=0xdf => Ok(1),
0xe0..=0xef => Ok(2),
0xf0..=0xf4 => Ok(3),
0xc0..=0xc1 | 0xf5..=0xff => Err(Utf8Error{ kind: NonUtf8Byte }),// too big or overlong
0x80..=0xbf => Err(Utf8Error{ kind: UnexpectedContinuationByte }),// following byte
}
}
#[inline]
fn extra_utf8_bytes_unchecked(self) -> usize {
// For fun I've optimized this function (for x86 instruction count):
// The most straightforward implementation, that lets the compiler do
// the optimizing:
//match self {
// 0b0000_0000...0b0111_1111 => 0,
// 0b1100_0010...0b1101_1111 => 1,
// 0b1110_0000...0b1110_1111 => 2,
// 0b1111_0000...0b1111_0100 => 3,
// _ => whatever()
//}
// Using `unsafe{core::hint::unreachable_unchecked()}` for the
// "don't care" case is a terrible idea: while having the function
// non-deterministically return whatever happens to be in a register
// MIGHT be acceptable, it permits the function to not `ret`urn at all,
// but let execution fall through to whatever comes after it in the
// binary! (in other words completely UB).
// Currently unreachable_unchecked() might trap too,
// which is certainly not what we want.
// I also think `unsafe{mem::unitialized()}` is much more likely to
// explicitly produce whatever happens to be in a register than tell
// the compiler it can ignore this branch but needs to produce a value.
//
// From the bit patterns we see that for non-ASCII values the result is
// (number of leading set bits) - 1
// The standard library doesn't have a method for counting leading ones,
// but it has leading_zeros(), which can be used after inverting.
// This function can therefore be reduced to the one-liner
//`self.not().leading_zeros().saturating_sub(1) as usize`, which would
// be branchless for architectures with instructions for
// leading_zeros() and saturating_sub().
// Shortest version as long as ASCII-ness can be predicted: (especially
// if the BSR instruction which leading_zeros() uses is microcoded or
// doesn't exist)
// u8.leading_zeros() would cast to a bigger type internally, so that's
// free. compensating by shifting left by 24 before inverting lets the
// compiler know that the value passed to leading_zeros() is not zero,
// for which BSR's output is undefined and leading_zeros() normally has
// special case with a branch.
// Shifting one bit too many left acts as a saturating_sub(1).
if self<128 {0} else {((self as u32)<<25).not().leading_zeros() as usize}
// Branchless but longer version: (9 instructions)
// It's tempting to try (self|0x80).not().leading_zeros().wrapping_sub(1),
// but that produces high lengths for ASCII values 0b01xx_xxxx.
// If we could somehow (branchlessy) clear that bit for ASCII values...
// We can by masking with the value shifted right with sign extension!
// (any nonzero number of bits in range works)
//let extended = self as i8 as i32;
//let ascii_cleared = (extended<<25) & (extended>>25);
//ascii_cleared.not().leading_zeros() as usize
// cmov version: (7 instructions)
//(((self as u32)<<24).not().leading_zeros() as usize).saturating_sub(1)
}
}
/// Methods for working with `u16`s as UTF-16 units.
pub trait U16UtfExt {
/// Will you need an extra unit to complete this codepoint?
///
/// Returns `Err` for trailing surrogates, `Ok(true)` for leading surrogates,
/// and `Ok(false)` for others.
fn utf16_needs_extra_unit(self) -> Result<bool,Utf16FirstUnitError>;
/// Does this `u16` need another `u16` to complete a codepoint?
/// Returns `(self & 0xfc00) == 0xd800`
///
/// Is basically an unchecked variant of `utf16_needs_extra_unit()`.
fn is_utf16_leading_surrogate(self) -> bool;
}
impl U16UtfExt for u16 {
#[inline]
fn utf16_needs_extra_unit(self) -> Result<bool,Utf16FirstUnitError> {
match self {
// https://en.wikipedia.org/wiki/UTF-16#U.2B10000_to_U.2B10FFFF
0x00_00..=0xd7_ff | 0xe0_00..=0xff_ff => Ok(false),
0xd8_00..=0xdb_ff => Ok(true),
_ => Err(Utf16FirstUnitError)
}
}
#[inline]
fn is_utf16_leading_surrogate(self) -> bool {
(self & 0xfc00) == 0xd800// Clear the ten content bytes of a surrogate,
// and see if it's a leading surrogate.
}
}
/// Extension trait for `char` that adds methods for converting to and from UTF-8 or UTF-16.
pub trait CharExt: Sized {
/// Get the UTF-8 representation of this codepoint.
///
/// `Utf8Char` is to `[u8;4]` what `char` is to `u32`:
/// a restricted type that cannot be mutated internally.
fn to_utf8(self) -> Utf8Char;
/// Get the UTF-16 representation of this codepoint.
///
/// `Utf16Char` is to `[u16;2]` what `char` is to `u32`:
/// a restricted type that cannot be mutated internally.
fn to_utf16(self) -> Utf16Char;
/// Iterate over or [read](https://doc.rust-lang.org/std/io/trait.Read.html)
/// the one to four bytes in the UTF-8 representation of this codepoint.
///
/// An identical alternative to the unstable `char.encode_utf8()`.
/// That method somehow still exist on stable, so I have to use a different name.
fn iter_utf8_bytes(self) -> Utf8Iterator;
/// Iterate over the one or two units in the UTF-16 representation of this codepoint.
///
/// An identical alternative to the unstable `char.encode_utf16()`.
/// That method somehow still exist on stable, so I have to use a different name.
fn iter_utf16_units(self) -> Utf16Iterator;
/// Convert this char to an UTF-8 array, and also return how many bytes of
/// the array are used,
///
/// The returned array is left-aligned with unused bytes set to zero.
fn to_utf8_array(self) -> ([u8; 4], usize);
/// Convert this `char` to UTF-16.
///
/// The second element is non-zero when a surrogate pair is required.
///
/// # Examples
///
/// ```
/// use encode_unicode::CharExt;
///
/// assert_eq!('@'.to_utf16_array(), ['@' as u16, 0]);
/// assert_eq!('睷'.to_utf16_array(), ['睷' as u16, 0]);
/// assert_eq!('\u{abcde}'.to_utf16_array(), [0xda6f, 0xdcde]);
/// ```
fn to_utf16_array(self) -> [u16; 2];
/// Convert this `char` to UTF-16.
/// The second item is `Some` if a surrogate pair is required.
///
/// # Examples
///
/// ```
/// use encode_unicode::CharExt;
///
/// assert_eq!('@'.to_utf16_tuple(), ('@' as u16, None));
/// assert_eq!('睷'.to_utf16_tuple(), ('睷' as u16, None));
/// assert_eq!('\u{abcde}'.to_utf16_tuple(), (0xda6f, Some(0xdcde)));
/// ```
fn to_utf16_tuple(self) -> (u16, Option<u16>);
/// Create a `char` from the start of an UTF-8 slice,
/// and also return how many bytes were used.
///
/// # Errors
///
/// Returns an `Err` if the slice is empty, doesn't start with a valid
/// UTF-8 sequence or is too short for the sequence.
///
/// # Examples
///
/// ```
/// use encode_unicode::CharExt;
/// use encode_unicode::error::Utf8ErrorKind::*;
///
/// assert_eq!(char::from_utf8_slice_start(&[b'A', b'B', b'C']), Ok(('A',1)));
/// assert_eq!(char::from_utf8_slice_start(&[0xdd, 0xbb]), Ok(('\u{77b}',2)));
///
/// assert_eq!(char::from_utf8_slice_start(&[]).unwrap_err(), TooFewBytes);
/// assert_eq!(char::from_utf8_slice_start(&[0xf0, 0x99]).unwrap_err(), TooFewBytes);
/// assert_eq!(char::from_utf8_slice_start(&[0xee, b'F', 0x80]).unwrap_err(), InterruptedSequence);
/// assert_eq!(char::from_utf8_slice_start(&[0xee, 0x99, 0x0f]).unwrap_err(), InterruptedSequence);
/// ```
fn from_utf8_slice_start(src: &[u8]) -> Result<(Self,usize),Utf8Error>;
/// Create a `char` from the start of an UTF-16 slice,
/// and also return how many units were used.
///
/// If you want to continue after an error, continue with the next `u16` unit.
fn from_utf16_slice_start(src: &[u16]) -> Result<(Self,usize), Utf16SliceError>;
/// Convert an UTF-8 sequence as returned from `.to_utf8_array()` into a `char`
///
/// The codepoint must start at the first byte, and leftover bytes are ignored.
///
/// # Errors
///
/// Returns an `Err` if the array doesn't start with a valid UTF-8 sequence.
///
/// # Examples
///
/// ```
/// use encode_unicode::CharExt;
/// use encode_unicode::error::Utf8ErrorKind::*;
///
/// assert_eq!(char::from_utf8_array([b'A', 0, 0, 0]), Ok('A'));
/// assert_eq!(char::from_utf8_array([0xf4, 0x8b, 0xbb, 0xbb]), Ok('\u{10befb}'));
/// assert_eq!(char::from_utf8_array([b'A', b'B', b'C', b'D']), Ok('A'));
/// assert_eq!(char::from_utf8_array([0, 0, 0xcc, 0xbb]), Ok('\0'));
///
/// assert_eq!(char::from_utf8_array([0xef, b'F', 0x80, 0x80]).unwrap_err(), InterruptedSequence);
/// assert_eq!(char::from_utf8_array([0xc1, 0x80, 0, 0]).unwrap_err().kind(), NonUtf8Byte);
/// assert_eq!(char::from_utf8_array([0xe0, 0x9a, 0xbf, 0]).unwrap_err().kind(), OverlongEncoding);
/// assert_eq!(char::from_utf8_array([0xf4, 0xaa, 0x99, 0x88]).unwrap_err(), TooHighCodepoint);
/// ```
fn from_utf8_array(utf8: [u8; 4]) -> Result<Self,Utf8Error>;
/// Convert a UTF-16 pair as returned from `.to_utf16_array()` into a `char`.
///
/// The second element is ignored when not required.
///
/// # Examples
///
/// ```
/// use encode_unicode::CharExt;
/// use encode_unicode::error::Utf16ArrayError;
///
/// assert_eq!(char::from_utf16_array(['x' as u16, 'y' as u16]), Ok('x'));
/// assert_eq!(char::from_utf16_array(['睷' as u16, 0]), Ok('睷'));
/// assert_eq!(char::from_utf16_array([0xda6f, 0xdcde]), Ok('\u{abcde}'));
/// assert_eq!(char::from_utf16_array([0xf111, 0xdbad]), Ok('\u{f111}'));
/// assert_eq!(char::from_utf16_array([0xdaaf, 0xdaaf]), Err(Utf16ArrayError::SecondIsNotTrailingSurrogate));
/// assert_eq!(char::from_utf16_array([0xdcac, 0x9000]), Err(Utf16ArrayError::FirstIsTrailingSurrogate));
/// ```
fn from_utf16_array(utf16: [u16; 2]) -> Result<Self, Utf16ArrayError>;
/// Convert a UTF-16 pair as returned from `.to_utf16_tuple()` into a `char`.
fn from_utf16_tuple(utf16: (u16, Option<u16>)) -> Result<Self, Utf16TupleError>;
/// Convert an UTF-8 sequence into a char.
///
/// The length of the slice is taken as length of the sequence;
/// it should be 1,2,3 or 4.
///
/// # Safety
///
/// The slice must contain exactly one, valid, UTF-8 sequence.
///
/// Passing a slice that produces an invalid codepoint is always undefined
/// behavior; Later checks that the codepoint is valid can be removed
/// by the compiler.
///
/// # Panics
///
/// If the slice is empty
unsafe fn from_utf8_exact_slice_unchecked(src: &[u8]) -> Self;
/// Convert a UTF-16 array as returned from `.to_utf16_array()` into a
/// `char`.
///
/// This function is safe because it avoids creating invalid codepoints,
/// but the returned value might not be what one expectedd.
///
/// # Examples
///
/// ```
/// use encode_unicode::CharExt;
///
/// // starts with a trailing surrogate - converted as if it was a valid
/// // surrogate pair anyway.
/// assert_eq!(char::from_utf16_array_unchecked([0xdbad, 0xf19e]), '\u{fb59e}');
/// // missing trailing surrogate - ditto
/// assert_eq!(char::from_utf16_array_unchecked([0xd802, 0]), '\u{10800}');
/// ```
fn from_utf16_array_unchecked(utf16: [u16;2]) -> Self;
/// Convert a UTF-16 tuple as returned from `.to_utf16_tuple()` into a `char`.
///
/// # Safety
///
/// If the second element is `None`, the first element must be a codepoint
/// in the basic multilingual pane.
/// (In other words, outside the range`0xd8_00..0xe0_00`.)
/// Violating this results in an invalid `char` in that reserved range
/// being created, which is (or can easily lead to) undefined behavior.
unsafe fn from_utf16_tuple_unchecked(utf16: (u16, Option<u16>)) -> Self;
/// Produces more detailed errors than `char::from_u32()`
///
/// # Errors
///
/// This function will return an error if
///
/// * the value is greater than 0x10ffff
/// * the value is between 0xd800 and 0xdfff (inclusive)
///
/// # Examples
///
/// ```
/// use encode_unicode::CharExt;
/// use encode_unicode::error::CodepointError;
///
/// assert_eq!(char::from_u32_detailed(0x41), Ok('A'));
/// assert_eq!(char::from_u32_detailed(0x40_00_00), Err(CodepointError::TooHigh));
/// assert_eq!(char::from_u32_detailed(0xd951), Err(CodepointError::Utf16Reserved));
/// assert_eq!(char::from_u32_detailed(0xdddd), Err(CodepointError::Utf16Reserved));
/// assert_eq!(char::from_u32_detailed(0xdd), Ok('Ý'));
/// assert_eq!(char::from_u32_detailed(0x1f331), Ok('🌱'));
/// ```
fn from_u32_detailed(c: u32) -> Result<Self,CodepointError>;
}
impl CharExt for char {
/////////
//UTF-8//
/////////
fn to_utf8(self) -> Utf8Char {
self.into()
}
fn iter_utf8_bytes(self) -> Utf8Iterator {
self.to_utf8().into_iter()
}
fn to_utf8_array(self) -> ([u8; 4], usize) {
let len = self.len_utf8();
let mut c = self as u32;
if len == 1 {// ASCII, the common case
([c as u8, 0, 0, 0], 1)
} else {
let mut parts = 0;// convert to 6-bit bytes
parts |= c & 0x3f; c>>=6;
parts<<=8; parts |= c & 0x3f; c>>=6;
parts<<=8; parts |= c & 0x3f; c>>=6;
parts<<=8; parts |= c & 0x3f;
parts |= 0x80_80_80_80;// set the most significant bit
parts >>= 8*(4-len);// right-align bytes
// Now, unused bytes are zero, (which matters for Utf8Char.eq())
// and the rest are 0b10xx_xxxx
// set header on first byte
parts |= (0xff_00u32 >> len) & 0xff;// store length
parts &= Not::not(1u32 << (7-len));// clear the next bit after it
(parts.to_le_bytes(), len)
}
}
fn from_utf8_slice_start(src: &[u8]) -> Result<(Self,usize),Utf8Error> {
let first = match src.first() {
Some(first) => *first,
None => return Err(Utf8Error{ kind: TooFewBytes }),
};
let bytes = match first.extra_utf8_bytes() {
Err(e) => return Err(e),
Ok(0) => return Ok((first as char, 1)),
Ok(extra) if extra >= src.len()
=> return Err(Utf8Error{ kind: TooFewBytes }),
Ok(extra) => &src[..=extra],
};
if bytes.iter().skip(1).any(|&b| (b >> 6) != 0b10 ) {
Err(Utf8Error{ kind: InterruptedSequence })
} else if overlong(bytes[0], bytes[1]) {
Err(Utf8Error{ kind: OverlongEncoding })
} else {
match char::from_u32_detailed(merge_nonascii_unchecked_utf8(bytes)) {
Ok(c) => Ok((c, bytes.len())),
Err(CodepointError::Utf16Reserved) => {
Err(Utf8Error{ kind: Utf16ReservedCodepoint })
},
Err(CodepointError::TooHigh) => Err(Utf8Error{ kind: TooHighCodepoint }),
}
}
}
fn from_utf8_array(utf8: [u8; 4]) -> Result<Self,Utf8Error> {
let src = match utf8[0].extra_utf8_bytes() {
Err(error) => return Err(error),
Ok(0) => return Ok(utf8[0] as char),
Ok(extra) => &utf8[..=extra],
};
if src[1..].iter().any(|&b| (b >> 6) != 0b10 ) {
Err(Utf8Error{ kind: InterruptedSequence })
} else if overlong(utf8[0], utf8[1]) {
Err(Utf8Error{ kind: OverlongEncoding })
} else {
match char::from_u32_detailed(merge_nonascii_unchecked_utf8(src)) {
Ok(c) => Ok(c),
Err(CodepointError::Utf16Reserved) => {
Err(Utf8Error{ kind: Utf16ReservedCodepoint })
},
Err(CodepointError::TooHigh) => Err(Utf8Error{ kind: TooHighCodepoint }),
}
}
}
unsafe fn from_utf8_exact_slice_unchecked(src: &[u8]) -> Self {
unsafe {
if src.len() == 1 {
src[0] as char
} else {
char::from_u32_unchecked(merge_nonascii_unchecked_utf8(src))
}
}
}
//////////
//UTF-16//
//////////
fn to_utf16(self) -> Utf16Char {
Utf16Char::from(self)
}
fn iter_utf16_units(self) -> Utf16Iterator {
self.to_utf16().into_iter()
}
fn to_utf16_array(self) -> [u16;2] {
let (first, second) = self.to_utf16_tuple();
[first, second.unwrap_or(0)]
}
fn to_utf16_tuple(self) -> (u16, Option<u16>) {
if self <= '\u{ffff}' {// single
(self as u16, None)
} else {// double
let c = self as u32 - 0x_01_00_00;
let high = 0x_d8_00 + (c >> 10);
let low = 0x_dc_00 + (c & 0x_03_ff);
(high as u16, Some(low as u16))
}
}
fn from_utf16_slice_start(src: &[u16]) -> Result<(Self,usize), Utf16SliceError> {
use crate::errors::Utf16SliceError::*;
unsafe {match (src.get(0), src.get(1)) {
(Some(&u @ 0x00_00..=0xd7_ff), _) |
(Some(&u @ 0xe0_00..=0xff_ff), _)
=> Ok((char::from_u32_unchecked(u as u32), 1)),
(Some(0xdc_00..=0xdf_ff), _) => Err(FirstIsTrailingSurrogate),
(None, _) => Err(EmptySlice),
(Some(&f @ 0xd8_00..=0xdb_ff), Some(&s @ 0xdc_00..=0xdf_ff))
=> Ok((char::from_utf16_tuple_unchecked((f, Some(s))), 2)),
(Some(0xd8_00..=0xdb_ff), Some(_)) => Err(SecondIsNotTrailingSurrogate),
(Some(0xd8_00..=0xdb_ff), None) => Err(MissingSecond),
}}
}
fn from_utf16_array(utf16: [u16;2]) -> Result<Self, Utf16ArrayError> {
use crate::errors::Utf16ArrayError::*;
if let Some(c) = char::from_u32(utf16[0] as u32) {
Ok(c) // single
} else if utf16[0] < 0xdc_00 && utf16[1] & 0xfc_00 == 0xdc_00 {
// correct surrogate pair
Ok(combine_surrogates(utf16[0], utf16[1]))
} else if utf16[0] < 0xdc_00 {
Err(SecondIsNotTrailingSurrogate)
} else {
Err(FirstIsTrailingSurrogate)
}
}
fn from_utf16_tuple(utf16: (u16, Option<u16>)) -> Result<Self, Utf16TupleError> {
unsafe {
match Utf16Char::validate_tuple(utf16) {
Ok(()) => Ok(Self::from_utf16_tuple_unchecked(utf16)),
Err(e) => Err(e),
}
}
}
fn from_utf16_array_unchecked(utf16: [u16;2]) -> Self {
// treat any array with a surrogate value in [0] as a surrogate because
// combine_surrogates() is safe.
// `(utf16[0] & 0xf800) == 0xd80` might not be quite as fast as
// `utf16[1] != 0`, but avoiding the potential for UB is worth it
// since the conversion isn't zero-cost in either case.
char::from_u32(utf16[0] as u32)
.unwrap_or_else(|| combine_surrogates(utf16[0], utf16[1]) )
}
unsafe fn from_utf16_tuple_unchecked(utf16: (u16, Option<u16>)) -> Self {
unsafe {
match utf16.1 {
Some(second) => combine_surrogates(utf16.0, second),
None => char::from_u32_unchecked(utf16.0 as u32)
}
}
}
fn from_u32_detailed(c: u32) -> Result<Self,CodepointError> {
match char::from_u32(c) {
Some(c) => Ok(c),
None if c > 0x10_ff_ff => Err(CodepointError::TooHigh),
None => Err(CodepointError::Utf16Reserved),
}
}
}
// Adapted from https://www.cl.cam.ac.uk/~mgk25/ucs/utf8_check.c
fn overlong(first: u8, second: u8) -> bool {
if first < 0x80 {
false
} else if (first & 0xe0) == 0xc0 {
(first & 0xfe) == 0xc0
} else if (first & 0xf0) == 0xe0 {
first == 0xe0 && (second & 0xe0) == 0x80
} else {
first == 0xf0 && (second & 0xf0) == 0x80
}
}
/// Decodes the codepoint represented by a multi-byte UTF-8 sequence.
///
/// Does not check that the codepoint is valid,
/// and returns `u32` because casting invalid codepoints to `char` is insta UB.
fn merge_nonascii_unchecked_utf8(src: &[u8]) -> u32 {
let mut c = src[0] as u32 & (0x7f >> src.len());
for b in &src[1..] {
c = (c << 6) | (b & 0b0011_1111) as u32;
}
c
}
/// Create a `char` from a leading and a trailing surrogate.
///
/// This function is safe because it ignores the six most significant bits of
/// each argument and always produces a codepoint in `0x01_00_00..=0x10_ff_ff`.
fn combine_surrogates(first: u16, second: u16) -> char {
unsafe {
let high = (first & 0x_03_ff) as u32;
let low = (second & 0x_03_ff) as u32;
let c = ((high << 10) | low) + 0x_01_00_00; // no, the constant can't be or'd in
char::from_u32_unchecked(c)
}
}
/// Adds `.utf8chars()` and `.utf16chars()` iterator constructors to `&str`.
pub trait StrExt: AsRef<str> {
/// Equivalent to `.chars()` but produces `Utf8Char`s.
fn utf8chars(&self) -> Utf8Chars;
/// Equivalent to `.chars()` but produces `Utf16Char`s.
fn utf16chars(&self) -> Utf16Chars;
/// Equivalent to `.char_indices()` but produces `Utf8Char`s.
fn utf8char_indices(&self) -> Utf8CharIndices;
/// Equivalent to `.char_indices()` but produces `Utf16Char`s.
fn utf16char_indices(&self) -> Utf16CharIndices;
}
impl StrExt for str {
fn utf8chars(&self) -> Utf8Chars {
Utf8Chars::from(self)
}
fn utf16chars(&self) -> Utf16Chars {
Utf16Chars::from(self)
}
fn utf8char_indices(&self) -> Utf8CharIndices {
Utf8CharIndices::from(self)
}
fn utf16char_indices(&self) -> Utf16CharIndices {
Utf16CharIndices::from(self)
}
}
#[cfg(feature="ascii")]
impl StrExt for AsciiStr {
fn utf8chars(&self) -> Utf8Chars {
Utf8Chars::from(self.as_str())
}
fn utf16chars(&self) -> Utf16Chars {
Utf16Chars::from(self.as_str())
}
fn utf8char_indices(&self) -> Utf8CharIndices {
Utf8CharIndices::from(self.as_str())
}
fn utf16char_indices(&self) -> Utf16CharIndices {
Utf16CharIndices::from(self.as_str())
}
}
/// Iterator methods that convert between `u8`s and `Utf8Char` or `u16`s and `Utf16Char`
///
/// All the iterator adapters also accept iterators that produce references of
/// the type they convert from.
pub trait IterExt: Iterator+Sized {
/// Converts an iterator of `Utf8Char`s or `&Utf8Char`s to an iterator of
/// `u8`s.
///
/// Has the same effect as `.flat_map()` or `.flatten()`, but the returned
/// iterator is ~40% faster.
///
/// The iterator also implements `Read`
/// (when the `std` feature isn't disabled).
/// Reading will never produce an error, and calls to `.read()` and `.next()`
/// can be mixed.
///
/// The exact number of bytes cannot be known in advance, but `size_hint()`
/// gives the possible range.
/// (min: all remaining characters are ASCII, max: all require four bytes)
///
/// # Examples
///
/// From iterator of values:
///
/// ```
/// use encode_unicode::{IterExt, StrExt};
///
/// let iterator = "foo".utf8chars();
/// let mut bytes = [0; 4];
/// iterator.to_bytes().zip(&mut bytes).for_each(|(b,dst)| *dst = b );
/// assert_eq!(&bytes, b"foo\0");
/// ```
///
/// From iterator of references:
///
#[cfg_attr(feature="std", doc=" ```")]
#[cfg_attr(not(feature="std"), doc=" ```no_compile")]
/// use encode_unicode::{IterExt, StrExt, Utf8Char};
///
/// let chars: Vec<Utf8Char> = "💣 bomb 💣".utf8chars().collect();
/// let bytes: Vec<u8> = chars.iter().to_bytes().collect();
/// let flat_map: Vec<u8> = chars.iter().cloned().flatten().collect();
/// assert_eq!(bytes, flat_map);
/// ```
///
/// `Read`ing from it:
///
#[cfg_attr(feature="std", doc=" ```")]
#[cfg_attr(not(feature="std"), doc=" ```no_compile")]
/// use encode_unicode::{IterExt, StrExt};
/// use std::io::Read;
///
/// let s = "Ååh‽";
/// assert_eq!(s.len(), 8);
/// let mut buf = [b'E'; 9];
/// let mut reader = s.utf8chars().to_bytes();
/// assert_eq!(reader.read(&mut buf[..]).unwrap(), 8);
/// assert_eq!(reader.read(&mut buf[..]).unwrap(), 0);
/// assert_eq!(&buf[..8], s.as_bytes());
/// assert_eq!(buf[8], b'E');
/// ```
fn to_bytes(self) -> Utf8CharSplitter<Self::Item,Self> where Self::Item: Borrow<Utf8Char>;
/// Converts an iterator of `Utf16Char` (or `&Utf16Char`) to an iterator of
/// `u16`s.
///
/// Has the same effect as `.flat_map()` or `.flatten()`, but the returned
/// iterator is about twice as fast.
///
/// The exact number of units cannot be known in advance, but `size_hint()`
/// gives the possible range.
///
/// # Examples
///
/// From iterator of values:
///
/// ```
/// use encode_unicode::{IterExt, StrExt};
///
/// let iterator = "foo".utf16chars();
/// let mut units = [0; 4];
/// iterator.to_units().zip(&mut units).for_each(|(u,dst)| *dst = u );
///
/// assert_eq!(units, ['f' as u16, 'o' as u16, 'o' as u16, 0]);
/// ```
///
/// From iterator of references:
///
#[cfg_attr(feature="std", doc=" ```")]
#[cfg_attr(not(feature="std"), doc=" ```no_compile")]
/// use encode_unicode::{IterExt, StrExt, Utf16Char};
///
/// // (💣 takes two units)
/// let chars: Vec<Utf16Char> = "💣 bomb 💣".utf16chars().collect();
/// let units: Vec<u16> = chars.iter().to_units().collect();
/// let flat_map: Vec<u16> = chars.iter().flat_map(|u16c| *u16c ).collect();
///
/// assert_eq!(units, flat_map);
/// ```
fn to_units(self) -> Utf16CharSplitter<Self::Item,Self> where Self::Item: Borrow<Utf16Char>;
/// Decodes bytes as UTF-8 and groups them into `Utf8Char`s
///
/// When errors (invalid values or sequences) are encountered,
/// it continues with the byte right after the start of the error sequence.
/// This is neither the most intelligent choiche (sometimes it is guaranteed to
/// produce another error), nor the easiest to implement, but I believe it to
/// be the most predictable.
/// It also means that ASCII characters are never hidden by errors.
///
/// # Examples
///
/// Replace all errors with u+FFFD REPLACEMENT_CHARACTER:
/// ```
/// use encode_unicode::{Utf8Char, IterExt};
///
/// let mut buf = [b'\0'; 255];
/// let len = b"foo\xCFbar".iter()
/// .to_utf8chars()
/// .flat_map(|r| r.unwrap_or(Utf8Char::from('\u{FFFD}')) )
/// .zip(&mut buf[..])
/// .map(|(byte, dst)| *dst = byte )
/// .count();
///
/// assert_eq!(&buf[..len], "foo\u{FFFD}bar".as_bytes());
/// ```
///
/// Collect everything up until the first error into a string:
#[cfg_attr(feature="std", doc=" ```")]
#[cfg_attr(not(feature="std"), doc=" ```no_compile")]
/// use encode_unicode::iterator::Utf8CharMerger;
/// let mut good = String::new();
/// for r in Utf8CharMerger::from(b"foo\xcc\xbbbar\xcc\xddbaz") {
/// if let Ok(uc) = r {
/// good.push_str(uc.as_str());
/// } else {
/// break;
/// }
/// }
/// assert_eq!(good, "foo̻bar");
/// ```
///
/// Abort decoding on error:
#[cfg_attr(feature="std", doc=" ```")]
#[cfg_attr(not(feature="std"), doc=" ```no_compile")]
/// use encode_unicode::{IterExt, Utf8Char};
/// use encode_unicode::error::{Utf8Error, Utf8ErrorKind};
///
/// let result = b"ab\0\xe0\xbc\xa9 \xf3\x80\x77".iter()
/// .to_utf8chars()
/// .collect::<Result<String,Utf8Error>>();
///
/// assert_eq!(result.unwrap_err().kind(), Utf8ErrorKind::InterruptedSequence);
/// ```
fn to_utf8chars(self) -> Utf8CharMerger<Self::Item,Self> where Self::Item: Borrow<u8>;
/// Decodes bytes as UTF-16 and groups them into `Utf16Char`s
///
/// When errors (unmatched leading surrogates or unexpected trailing surrogates)
/// are encountered, an error is produced for every unit.
///
/// # Examples
///
/// Replace errors with '�':
#[cfg_attr(feature="std", doc=" ```")]
#[cfg_attr(not(feature="std"), doc=" ```no_compile")]
/// use encode_unicode::{IterExt, Utf16Char};
///
/// let slice = &['a' as u16, 0xdf00, 0xd83c, 0xdca0][..];
/// let string = slice.iter()
/// .to_utf16chars()
/// .map(|r| r.unwrap_or(Utf16Char::from('\u{fffd}')) ) // REPLACEMENT_CHARACTER
/// .collect::<String>();
///
/// assert_eq!(string, "a�🂠");
/// ```
///
/// ```
/// use encode_unicode::{IterExt, Utf16Char};
/// use encode_unicode::error::Utf16PairError::*;
///
/// let slice = [0xdcba, 0xdeff, 0xd8be, 0xdeee, 'Y' as u16, 0xdab1, 0xdab1];
/// let mut iter = slice.iter().to_utf16chars();
/// assert_eq!(iter.size_hint(), (3, Some(7)));
/// assert_eq!(iter.next(), Some(Err(UnexpectedTrailingSurrogate)));
/// assert_eq!(iter.next(), Some(Err(UnexpectedTrailingSurrogate)));
/// assert_eq!(iter.next(), Some(Ok(Utf16Char::from('\u{3faee}'))));
/// assert_eq!(iter.next(), Some(Ok(Utf16Char::from('Y'))));
/// assert_eq!(iter.next(), Some(Err(UnmatchedLeadingSurrogate)));
/// assert_eq!(iter.next(), Some(Err(Incomplete)));
/// assert_eq!(iter.into_remaining_units().next(), None);
/// ```
///
/// Search for a codepoint and return the codepoint index of the first match:
/// ```
/// use encode_unicode::{IterExt, Utf16Char};
///
/// let position = [0xd875, 0xdd4f, '≈' as u16, '2' as u16].iter()
/// .to_utf16chars()
/// .position(|r| r == Ok(Utf16Char::from('≈')) );
///
/// assert_eq!(position, Some(1));
/// ```
fn to_utf16chars(self) -> Utf16CharMerger<Self::Item,Self> where Self::Item: Borrow<u16>;
}
impl<I:Iterator> IterExt for I {
fn to_bytes(self) -> Utf8CharSplitter<Self::Item,Self> where Self::Item: Borrow<Utf8Char> {
Utf8CharSplitter::from(self)
}
fn to_units(self) -> Utf16CharSplitter<Self::Item,Self> where Self::Item: Borrow<Utf16Char> {
Utf16CharSplitter::from(self)
}
fn to_utf8chars(self) -> Utf8CharMerger<Self::Item,Self> where Self::Item: Borrow<u8> {
Utf8CharMerger::from(self)
}
fn to_utf16chars(self) -> Utf16CharMerger<Self::Item,Self> where Self::Item: Borrow<u16> {
Utf16CharMerger::from(self)
}
}
/// Methods for iterating over `u8` and `u16` slices as UTF-8 or UTF-16 characters.
///
/// The iterators are slightly faster than the similar methods in [`IterExt`](trait.IterExt.html)
/// because they con "push back" items for free after errors and don't need a
/// separate buffer that must be checked on every call to `.next()`.
pub trait SliceExt: Index<RangeFull> {
/// Decode `u8` slices as UTF-8 and iterate over the codepoints as `Utf8Char`s,
///
/// # Examples
///
/// Get the index and error type of the first error:
#[cfg_attr(feature="std", doc=" ```")]
#[cfg_attr(not(feature="std"), doc=" ```no_compile")]
/// use encode_unicode::{SliceExt, Utf8Char, error::Utf8ErrorKind};
///
/// let slice = b"ab\0\xe0\xbc\xa9 \xf3\x80\x77";
/// let result = slice.utf8char_indices()
/// .map(|(offset,r,length)| r.map_err(|e| (offset,e.kind(),length) ) )
/// .collect::<Result<String,(usize,Utf8ErrorKind,usize)>>();
///
/// assert_eq!(result, Err((7, Utf8ErrorKind::TooFewBytes, 1)));
/// ```
///
/// ```
/// use encode_unicode::{SliceExt, Utf8Char};
/// use std::error::Error;
///
/// let slice = b"\xf0\xbf\xbf\xbfXY\xdd\xbb\xe1\x80\x99quux123";
/// let mut fixed_size = [Utf8Char::default(); 8];
/// for (cp_i, (byte_index, r, _)) in slice.utf8char_indices().enumerate().take(8) {
/// match r {
/// Ok(u8c) => fixed_size[cp_i] = u8c,
/// Err(e) => panic!("Invalid codepoint at index {} ({})", cp_i, e),
/// }
/// }
/// let chars = ['\u{3ffff}', 'X', 'Y', '\u{77b}', '\u{1019}', 'q', 'u', 'u'];
/// assert_eq!(fixed_size, chars);
/// ```
///
#[cfg_attr(feature="std", doc=" ```")]
#[cfg_attr(not(feature="std"), doc=" ```no_compile")]
/// use encode_unicode::{SliceExt, Utf8Char, error::Utf8ErrorKind};
///
/// let bytes = b"\xfa-\xf4\x8f\xee\xa1\x8f-\xed\xa9\x87\xf0\xcc\xbb";
/// let mut errors = Vec::new();
/// let mut lengths = Vec::new();
/// let mut string = String::new();
/// for (offset,result,length) in bytes.utf8char_indices() {
/// lengths.push((offset,length));
/// let c = result.unwrap_or_else(|error| {
/// errors.push((offset, error.kind()));
/// Utf8Char::from('\u{fffd}') // replacement character
/// });
/// string.push_str(c.as_str());
/// }
///
/// assert_eq!(string, "�-��\u{e84f}-����\u{33b}");
/// assert_eq!(lengths, [(0,1), (1,1), (2,1), (3,1), (4,3), (7,1),
/// (8,1), (9,1), (10,1), (11,1), (12,2)]);
/// assert_eq!(errors, [
/// ( 0, Utf8ErrorKind::NonUtf8Byte),
/// ( 2, Utf8ErrorKind::InterruptedSequence),
/// ( 3, Utf8ErrorKind::UnexpectedContinuationByte),
/// ( 8, Utf8ErrorKind::Utf16ReservedCodepoint),
/// ( 9, Utf8ErrorKind::UnexpectedContinuationByte),
/// (10, Utf8ErrorKind::UnexpectedContinuationByte),
/// (11, Utf8ErrorKind::TooFewBytes), // (but it was not the last element returned!)
/// ]);
/// ```
fn utf8char_indices(&self) -> Utf8CharDecoder where Self::Output: Borrow<[u8]>;
/// Decode `u16` slices as UTF-16 and iterate over the codepoints as `Utf16Char`s,
///
/// The iterator produces `(usize,Result<Utf16Char,Utf16Error>,usize)`,
/// and the slice is validated as you go.
///
/// The first `usize` contains the offset from the start of the slice and
/// the last `usize` contains the length of the codepoint or error.
/// The length is either 1 or 2, and always 1 for errors.
///
/// # Examples
///
#[cfg_attr(feature="std", doc=" ```")]
#[cfg_attr(not(feature="std"), doc=" ```no_compile")]
/// use encode_unicode::{SliceExt, Utf8Char};
///
/// let slice = &['a' as u16, 0xdf00, 0xd83c, 0xdca0][..];
/// let mut errors = Vec::new();
/// let string = slice.utf16char_indices().map(|(offset,r,_)| match r {
/// Ok(u16c) => Utf8Char::from(u16c),
/// Err(_) => {
/// errors.push(offset);
/// Utf8Char::from('\u{fffd}') // REPLACEMENT_CHARACTER
/// }
/// }).collect::<String>();
///
/// assert_eq!(string, "a�🂠");
/// assert_eq!(errors, [1]);
/// ```
///
/// Search for a codepoint and return its unit and codepoint index.
/// ```
/// use encode_unicode::{SliceExt, Utf16Char};
///
/// let slice = [0xd875,/*'𝕏'*/ 0xdd4f, '≈' as u16, '2' as u16];
/// let position = slice.utf16char_indices()
/// .enumerate()
/// .find(|&(_,(_,r,_))| r == Ok(Utf16Char::from('≈')) )
/// .map(|(codepoint, (offset, _, _))| (codepoint, offset) );
///
/// assert_eq!(position, Some((1,2)));
/// ```
///
/// Error types:
/// ```
/// use encode_unicode::{SliceExt, Utf16Char};
/// use encode_unicode::error::Utf16PairError::*;
///
/// let slice = [0xdcba, 0xdeff, 0xd8be, 0xdeee, 'λ' as u16, 0xdab1, 0xdab1];
/// let mut iter = slice.utf16char_indices();
/// assert_eq!(iter.next(), Some((0, Err(UnexpectedTrailingSurrogate), 1)));
/// assert_eq!(iter.next(), Some((1, Err(UnexpectedTrailingSurrogate), 1)));
/// assert_eq!(iter.next(), Some((2, Ok(Utf16Char::from('\u{3faee}')), 2)));
/// assert_eq!(iter.next(), Some((4, Ok(Utf16Char::from('λ')), 1)));
/// assert_eq!(iter.next(), Some((5, Err(UnmatchedLeadingSurrogate), 1)));
/// assert_eq!(iter.next(), Some((6, Err(Incomplete), 1)));
/// assert_eq!(iter.next(), None);
/// assert_eq!(iter.as_slice(), [])
/// ```
fn utf16char_indices(&self) -> Utf16CharDecoder where Self::Output: Borrow<[u16]>;
}
impl<S: ?Sized+Index<RangeFull>> SliceExt for S {
fn utf8char_indices(&self) -> Utf8CharDecoder where Self::Output: Borrow<[u8]> {
Utf8CharDecoder::from(self[..].borrow())
}
fn utf16char_indices(&self) -> Utf16CharDecoder where Self::Output: Borrow<[u16]> {
Utf16CharDecoder::from(self[..].borrow())
}
}